
17-313: Foundations of Software Engineering

Homework 5: Quality Assurance for the People
In this assignment, you will carefully consider and engage in several QA-related processes to evaluate and 
look for defects in your prototype Mayan-EDMS-based graduate admissions system. The goals of this 
assignment are:

Gain hands-on experience with analysis tools, including setting up, customizing, and using them.

Practically assess and compare the costs and benefits of existing static bug-finding tools.

Develop a plan to integrate and roll out tools in development practice.

Explain the predictions of a Machine Learning Model, and reason about their implications.

Project Context and Tasks

Quality Assurance is a critical part of software development. Although you have been testing your new 
graduate admissions system this whole time, you are now setting out to establish a sustained QA practice 
that can be used moving forward as you iterate over and continue to improve your system. Your CTO has 
assigned you the task of evaluating existing tools and practices beyond unit testing, and producing a report 
on (A) the cost/benefit tradeoffs and risks of several tools and processes and (B) how they might fit in 
development practice.

Static Analysis

First, you will evaluate and choose between a set of static analysis tools, integrate it into your 
build/deployment pipeline, and document your decisions/process by way of a design document/RFC. For the 
purposes of this RFC, you must identify and experiment with at least N potential static analysis tools that are 
applicable to your system, where N is the size of your group. We provide a starter list below; at least one 
tool must be taken from either a Google search or from the Awesome Static Analysis page (that is, cannot 
otherwise be listed in the bulleted list).

Import the latest/best version of your code (ideally one with a large number of commits, see part (3)) from 
any prior homework into a fresh repository. You can create a HW 5 repository using this link:

Create Assignment with Github Classroom

Apply the tools to your project. You may also apply it to one or more other programs if you wish to assess it 
in different contexts. Consider and experiment with the types of customization that are appropriate or 
necessary for this tool, both a priori (before they can be used in your project) and possibly over time. Assess 
the strengths and weaknesses of each tool/technique, both quantitatively and qualitatively. You might 
consider issues like, but not limited to: what types of problems are you hoping your tooling will catch? What 
types of problems does a particular tool catch? What types of customization are possible or necessary? How 
can/should this tool be integrated into a development process? Are there many false positives? False 

https://classroom.github.com/g/HQHxrion


negatives? True positive reports about things you don't care about?

The deliverable for this part, at a high level, is a Design Document/RFC that explains and justifies the static 
analysis tooling you propose to incorporate into your process, and how you propose to do so. This decision 
should be feature- and data-driven, and should consider usability and process questions like how and when 
the tooling will be applied, and by whom. See below for more details.

NOTE: you do not need to integrate ALL N tools into your repo, but you should integrate at least (1) 
tool so that it runs via CI, and have one commit on which it was run. You should reference this 
commit in your design document

Starter list of Tools:

Pylint, one of the best-known and most widely-used Python static analysis suite, provides a collection 
of tools, including a linter/style checker, pyreverse (which reverse-engineers UML diagrams), etc.

Pyflakes is similar to the core linter in pylint, but with an emphasis on speed and low false positives.

Mypy provides static type checking for Python

sonarQube is a proprietary product targeting multiple languages, including Python; it has an open-
source version you may want to try.

Flake8 provides a wrapper around a number of other tools.

Others are available. Awesome Static Analysis page/repo has an extensive listing of available static 
analysis tools for a pretty hefty list of programming languages, including Python. Other tools target 
Django specifically; use your Googling skills, and see what you find!

ML Model Assessment

In the last homework assignment, you created a Machine Learning model. Your CTO is seriously 
considering adding it into your product. However, before announcing it as a feature, she wants to ensure that 
your team has a deep understanding of how the ML model is working, as well as that it is tested with respect 
to any concerns that may have surfaced previously.

For this task, your team is tasked with writing a data-driven report for your CTO. You should evaluate the 
model, test outcomes, present your findings, and discuss them.

Your first task to to present a data-driven analysis of the predictions that your model is making. You will do 
this using the LIME tool we have previously looked at in class: https://github.com/marcotcr/lime

Run this tool on your model, and collect data on how the model is making predictions. You should use this 
data to report on the behavior of the ML recommendation system.

This step will allow your company to ensure that the ML is working properly. However, you are also 
concerned with fairness.

You should also include in your report a data-driven analysis of the fairness of your algorithm. To analyze 

https://www.pylint.org/
https://pypi.org/project/pyflakes/
http://www.mypy-lang.org/
https://www.sonarqube.org/features/multi-languages/
http://flake8.pycqa.org/en/latest/
https://endler.dev/awesome-static-analysis/
https://github.com/marcotcr/lime


the fairness, you should remember the fairness discussion we had in class, based on this tool: ML 
Discrimination

Finally, you report should include a recommendation if you want to use the ML, scrap it, or make specific 
improvements before rolling it out. Specifically your report should include the following information:

Data-driven analysis of the predictions the model is making.

Any concerns you have about the quality of the predictions in light of this data.

Any features in the data you are concerned about from a fairness perspective. HINT: you might want 
to consult your last homework when considering this.

A data-driven analysis of the interplay between these features and your ML model. There are various 
ways to do this, but a simple approach might consider the following:

Distribution of this feature in your dataset.

Distribution of this feature in your accepted and rejected recommendation populations

Relationship between this feature and your false positives and false negatives.

Based on this data, you should consider what is the fairness strategy that you are trying to achieve. 
You may use one of the fairness strategies we considered in class, or define your own. If you define a 
new fairness strategy, you should describe it, and present why you think it is a better fit than any of the 
existing strategies for this product.

If you are not happy with the performance of the system, based on the data you have collected, you 
should do the following:

Report on what aspects of the system you are unhappy with

Iterate your model 1 iteration, and see if you can improve its performance. Most likely, this will 
NOT be enough to fix it, but your goal in this assignment is to learn enough to make a 
reasonable estimate of the effort needed to fix the model.

Make an estimate of how long it will take to bring the model up to acceptable performance. This 
can be a "T-Shirt" estimate (e.g., S/M/L/XL) but it should also include completion criteria. This 
will look like specific thresholds that your model should achieve before you would be 
comfortable shipping it as a part of your product.

https://research.google.com/bigpicture/attacking-discrimination-in-ml/
https://research.google.com/bigpicture/attacking-discrimination-in-ml/


At the end of this report, make a recommendation to your CTO. This recommendation should be one 
of the following:

It is good enough to use now, we should ship it.

It is not good enough to ship, but we have a plan to improve it

We don't feel comfortable shipping this feature, we should scrap it.

Deadlines and Deliverables

This homework has one (1) deadline and two (2) deliverables. The deadline (Tuesday, Nov 24th) is for all 
the deliverables: the static analysis design doc, and the report on the ML model.

Part A: Static Analysis - Group (due Nov 24) - 100 points (50%)

The deliverable for this part is a Design Document/RFC that provides (1) a justified explanation for which 
tool(s) you think the project should use moving forward, and (2) how it shall be integrated into your process 
(you must recommend at least one tool, even if it's with reservations). This latter point should address both 
technical (e.g., at what point in the development/deployment process shall it be integrated? What sorts of 
customization or configuration will you be using?) and social issues (e.g., how will you incentivize the 
change?), as applicable. The justification should be based on your experiences running the tools and, as 
much as possible, be grounded in data about, for example, tool usability, output, and customizability.

Be sure the RFC also explains/justifies the alternative tools (or process options, if pertinent) that have been 
rejected. To receive full credit, you must consider at least N total tool options in your RFC, where N is the 
size of your team.

The document should also contain other relevant sections for a Design Document/RFC for this type of 
(development process) feature. Are there open questions? Issues you consider out of scope? Drawbacks of 
the proposed process/tooling that you are accepting for some (good) reason? Etc. That is: make sure it's a 
good/complete design document!

NOTE: in your PDF submitted to gradescope, you should explictly reference at least one commit on 
which your tool has been run in your repo.

Submit the Design Document as a single PDF to Gradescope.

Part B: ML Explainability -- Group (due Nov 24) -- 100 points (50%)

After your success with HW4, your team has started collecing data in production.

This new data for your ML service goes well beyond the data you used for testing. You can find the updated 
data here: Production Data For the rest of the assignment, you should be using the more complete production 
data in the place of the previous limited training data.

For this deliverable, you will be collecting data, and writing a report. The report should include the data you 
collect as well as your interpretation of the data.

https://cmu-313.github.io/homeworks/ProductionData.csv.zip


First, you should collect data by running LIME on your ML model from the last homework, with the new 
data. You should present the results of this as data in your report.

Then, you will interpret the data to explain why your machine learning model is making predictions. This 
information should include the features that provide the most predictive power.

You should also evaluate your machine learning model considering fairness issues. You will evaluate the 
performance of your model with a specific target fairness strategy in mind, and if you are unhappy with the 
fairness of the model, you will come up with thresholds that you feel the model must meet before you would 
feel comfortable using it.s

Based on your findings, you should recommend one of three options. You might feel that the Model is good 
enough to deploy as is, you might recommend specific changes before you deploy, or you might recommend 
it not be deployed at all.

Submit this report as a PDF via Gradescope.


