
17-313: Foundations of Software Engineering

Homework 6: Open Source Excursion

In this assignment, your high-level goal is to produce and submit a non-trivial modification or extension
to an open-source project in a way that maximizes the chances that the project maintainers accept it. If
you demonstrate to us that your change has been accepted and integrated into the project’s code base, you
will get 20 (6%) bonus points. Your team will select an open source project, select a change to
implement, actually contribute to the project, and present your insights to the class. You will individually
reflect on your teamwork and open source experience.

• Holistically apply software engineering methods in the context of a real-world problem, including
process, requirements, architecture, measurement, and quality assurance.

• Gain broad and deep exposure to the culture and practices of open-source communities
• Understand commonly used infrastructure used in open-source, and how to choose infrastructure

when starting a new open-source project.
• Engage with an open-source community.
• Identify process issues and suggest improvements in real-world projects, including

communication, collaboration, tooling, quality assurance, formal and informal rules and policies.
• Coordinate within a team and adopt practices for efficient teams.
• Understand a project’s architecture and design and make a decision about the feasibility of a

proposed task.
• Divide and schedule work within a project.
• Discuss how agile practices affect development.
• Discuss business concerns and business models of software development.

Overview

Selecting one or more task(s): As a team, you will select an open-source project and complete one or
more bug fixes or extensions within it. For the rest of this assignment, we will refer to bug fixes and
extensions as tasks. You have considerable freedom in which project and tasks you choose, so long as
they adhere to the following criteria:

• The open source project should be active, with multiple contributors. Previous students have
lamented choosing dead or maintenance projects without sufficient community support. Do not
make this mistake.

• The task(s) should be taken from a bug report or feature request in a public database or message
board, following whatever protocol the project uses to communicate and track open issues. Do
not invent a task. Address an actual, documented project need.

• The task must require changes to the project’s source code. Pure documentation or design tasks
are not appropriate.

• You may choose one large task or several smaller, related tasks. Choose tasks that benefit from
teamwork and are appropriate for your team size (i.e., do not select one small independent task
per team member). The tasks should be scoped such that each team member spends ~36 hours
each on the project: ~8 hours to identify a project and get the lay of the land; ~22 hours to create a
work list, design, and execute your changes; and ~6 hours to prepare your report and video.

If you have questions on these criteria, contact the course staff.

Planning the task: As you did in Homework 2, plan before you start coding. You should identify risks
and requirements, and develop a collaboration plan and schedule.

Performing the task: As a team, implement the proposed changes/tasks. You should write code and
perform adequate quality assurance activities. Beyond that, you may also need to:

• Take further steps to understand the project’s code. You might find it useful to engage in intra-
team discussions using static or dynamic diagrams. You might also find it useful to elicit
feedback on your ideas by communicating with members of the open-source community.

• Submit your changes to the project. Create any necessary documentation to enable acceptance of
your code. New contributors rarely have commit privileges to a master repository. Common
contribution mechanisms include pull requests, emails to a project lead, or discussion board posts.
You may also need to update the bug database.

• Plan and perform an appropriate level of “marketing” for your submission. Avoid stepping on
toes and keep your activities appropriate for the project culture. Try to mimic contributors who
have previously successfully submitted similar work.

• Solicit feedback and respond to those who take the time to evaluate your work.

You are required to submit your work to the open-source project. It is not required that the project accepts
your submission, but you will get bonus points if they do. If your code is accepted after the homework
deadline but before the final exam, inform the course staff.

Reporting and reflection: You will report on your project and task selection, work, and experience in
several ways (see below). This will include a group video presentation to the class.

Deadlines and deliverables

This homework has four (4) deliverables. The first deliverable is due during the semester; the remaining
three are all due the night before the final project video presentations (during our final exam slot).

Part A: Task Selection and Planning (100 pts, team due Tuesday, December 8th, 11:59pm)

The first deliverable is an initial report on the project and task(s) you select, with a proposed schedule
(with estimates).

Start by researching candidate open source projects with an eye towards making an informed decision
about which project you will contribute to. As examples, consider: the type of software, the project age,
the number of active contributors, the amount of activity and communication among contributors, the
number and types of feature requests/bug reports you might address, the tools and mechanisms the project
uses to communicate and collaborate, the dominant programming language/paradigm/framework, as well
as the larger context in which the software operates. Communication with the candidate open source
projects is encouraged.

Your goal is to make a principled, informed decision as to which project and task(s) you will tackle. The
type of information you collect can vary depending on how your team makes this decision. However, you
should justify that decision by grounding it in facts about the projects/tasks you consider.

Your report should include:

1. Overview and justification: A report on the project you selected, summarizing the relevant
characteristics you considered when making your selection. Beyond whatever additional
information you collect in your research, include at least a name, a website link, and a brief
description of the project (what it does, who uses it, etc). Explain the criteria your team used in
selecting it over any others, referencing the collected information from your overview. You may
contrast it to other projects you considered but rejected, if applicable (approximately 2
paragraphs).

Once your team has settled on a project and one or more candidate tasks, research your ideas in more
detail. Read the documentation. Build and execute the source code, and try to read/understand it. You
should explore the code to the point that you understand how your modification fits in the overall picture,
and that you are convinced that it is both non-trivial but doable with the resources (time, team members)
available.

In selecting a task, consider the functional and non-functional implications and requirements of your
proposed task(s), as well as how it fits in the larger project structure. We do not want a full software
requirements specification. Instead, we want lightweight documentation of your tasks’ requirements and
evidence that you understand how it fits into the larger project.

Your report should then also include:

2. Successful build: Evidence that you can build and run the software (e.g., a screenshot or text
output from a successful build, a screenshot of the running program). Getting an open-source
project to build/run can be a huge effort, and we want to mitigate this risk.

3. Task(s) description: A brief textual description of your proposed change(s). If you are proposing
several changes, list all proposed changes and a priority order. Depending on how difficult the
changes end up being, you may do not necessarily have to implement all of them. However, if
your actual changes deviate from the plan, we expect a short explanation with the final
submission. (< 2 paragraphs per task).

4. Task link(s): Evidence that the task(s) is/are requested by the community (a screenshot or link
suffices).

Once you have selected a project and task(s), estimate time and effort and schedule your work, as you did
for Homework 2. As in Homework 2, we will grade your planning, but not your accuracy after the fact. It
is completely acceptable if plans change, as long as you document the changes and their reasons and
update the plan. The plan should illustrate how you will work as a team on this assignment and anticipate
and plan for the main risks.

Your report should also include:

5. An initial time plan: As in Homework 2, choose any format as long as it is clear (though do
consider/incorporate any feedback we gave you then!). This should include at least: individual
tasks and milestones, with deliverables; estimated effort for each task; dependencies between
tasks; and a best-effort assignment of tasks to team members. We encourage you to include
supporting evidence for your estimates. We do not expect a full QA plan in this initial report, but
be sure to schedule time for such activities. See the final team report for more on QA. (< 1 page)

6. Task scope justification: Evidence that the tasks are of a sufficient and reasonable size and
complexity for your team and for this assignment. Your scheduling and effort estimation may be
used to help justify your argument here. (1 paragraph per task)

We strongly recommend that you interact with the course staff during this process to verify that the scope
of your proposal seems reasonable. We strongly encourage you to do this as early as possible, and before
you start investing too heavily in your plans. We will try to reply within 24 hours. You can send a Slack
message along with your group to the course staff, briefly describing the project(s) and task(s) you are
considering. You may include one project/task that you think you’ve settled on, or several based on your
research. We would also be happy to discuss this during our office hours, or by appointment. This check-
in is not mandatory, but if you skip it, we will be less forgiving in the final grading if it transpires that the
task(s) you selected were poorly-scoped for your team!

Submit the initial report covering the 9 points listed above as a single PDF file per team to
Canvas/Gradescope. Include the names of all team members on the title page and ensure the document
is structured to make it easy to find the 6 points. Page limits are provided for guidance; we will not
enforce them.

Part B: Project Report (100 pts, team, due Thursday, December 17, 11:59 pm)

After completing and submitting the modification, write a report about the tasks you have performed. The
report will include a description of the project and its business context, a description of your tasks and
their context, an explanation of deviations from your plans in Part A, and a discussion of your quality
assurance efforts and why they were suitable. Specifically, we expect the following sections:

1. Selected project: A brief description of the open source system to which you contributed (1
paragraph). You may reuse text from Part A.

2. Project context and business model: An analysis of the open-source project’s context and
business model. This may include a short history of the project, competing open- and closed-
source projects, or a discussion of the developers’ motivations to build this system. Essentially,
we want to know why this project exists and why it is important. (<0.5 page)

3. Task description (per task): A description of the tasks you have implemented and a high-level
description of how you implemented them (<0.5 page).

4. Submitted artifacts (per task): Evidence of the code, documentation, or other artifacts you
produced for the task, and evidence that you submitted them to the project. We prefer links to
publicly available resources (repository, email, pull request, etc), but will accept a zip file of your
artifacts with a screenshot documenting the submission.

5. QA strategy: Describe which QA activities you performed and justify why you selected these
QA activities over others. Describe metrics if appropriate. The justification will likely refer to
relevant requirements as well as to the project’s practices. (<1 page)

6. QA evidence: Evidence of your quality assurance activities described above. For example,
provide source code or links to source code of tests, provide test protocols, comments or
protocols from code reviews, reports from static analysis tools, links to or screenshots from a
continuous integration platform, and so forth.

7. Plan updates: A description and justification of deviations between your initial plans and your
performed activities (as in Homework 2). Changes are expected, but they should be tracked and
explained. Describe changes in scope (e.g., fewer tasks) and in the schedule and work allocation.
Provide an updated schedule and note differences. Explain the causes of the changes, such as
unanticipated risks. (<1 page)

8. (Optional) Evidence that your changes have been accepted into the code base of the open source
project in forms of links or screenshots.

Page limits are provided for guidance; we will not enforce them. Collect all parts in a single PDF
document with clear subsections and the names of all team members and submit that file to Canvas.

Part C: Video presentations (40 pts, team, video due Thursday, December 17, 11:59 pm; video and
Q&A to be conducted during our final exam slot, December 18th)

The Final Exam time is dedicated to group presentations about your open source contributions. Given the
remote format, we ask that you prepare this presentation as a video that we will play for you, with a live
Q&A component (5-10 minutes) afterwards. We expect all team members to take an active role in the
video and Q&A, and for you to give feedback to the other presentations. We will provide a feedback
form. Video times should not exceed 10 minutes (hard limit).

See below for what to do if you are in a timezone 12-hours offset from Pittsburgh.

The goal of the video presentation is primarily to teach the class about the project to which you
contributed, and your experiences. You should mention your contribution (the actual tasks), but we do not
expect you to include, for example, any code or diagrams from your report, unless they’re helpful for
supporting a point about your interactions with the project. Your video should cover the following three
topics (in any order and structure you deem appropriate):

1. High-level project and task description: Describe the project in terms of its high-level goals
and the context in which it operates. This may include a brief history and the business context, if
interesting or relevant. For example, it may be interesting to note that a project was spawned from
a closed-source operation, or that it competes primarily with a closed-source counterpart. Include
a brief description of the task(s) you performed, such that the audience has sufficient context to
understand your explanation of your experiences, below. You should not spend more than 1/2 of
the video describing the project and your task(s).

2. Project governance and communication: Describe the processes and tools the project uses to
coordinate among contributors. For example: Are these processes formal or informal? Provide an

explicit description (possibly with a diagram) of the acceptance process used for efforts like the
task you completed. If applicable, include standards or expectations regarding software
engineering activities including requirements, architecture, and quality assurance; alternatively
mention that no such standards exist.

3. Your experiences: Summarize your experiences (and what you learned!) interacting with this
community of open source developers, focusing on any surprising or unusual aspects of the
process or interaction. For example: Did you run into any trouble understanding, changing, or
contributing to a large, pre-existing project? Were there unanticipated challenges in either
implementing your change, or in getting the change submitted to and accepted by the project
maintainers? Did the project collaboration process or culture help or hinder your effort in any
way? Characterize any interaction you had with the team leadership and community, highlighting
especially any useful/useless input you received. You may (but are not required to) also relate the
experience from this homework assignment with relevant experience from internships or other
projects.

Your summary of your experiences can be at whatever level of detail you think is interesting or
informative. Given the time limit, selecting and highlighting the two or three most important or
interesting observations is likely more useful than trying to be complete.

Submit your video either as a file upload, link to a drive/box file, or link to a youtube video to Canvas.
This deliverable is separate from the report. You must do this by the deadline, so we can queue up
everyone’s videos in advance of the presentation slot.

If you are in a timezone more than 3-6 hours away from EST (e.g., Singapore): You have two
choices:

1. You may watch the video after the fact (we will post links, likely to just the final exam session)
and submit your feedback for the other groups via the same google form as everyone else. We
may also communicate some Q&A questions to you/your group to answer asynchronously. The
one catch is that unfortunately, due to the timeline for grade submission, you’ll have to do this
fairly quickly, over the weekend sometime, so that we have your submissions by morning
(Pittsburgh time) December 21.

2. You’re also welcome to join during at the regular final exam slot, if you’ve been operating on a
weird sleep schedule this whole time, and participate like everyone else. We don’t encourage you
to stay up, but we want you to know that you can if you want.

You must do one or the other, and you must tell us ahead of time if you plan to take the asynchronous
option so we can plan accordingly. Message the course staff on Slack to confirm your plans with us.

Part D: Individual Reflection (80 pts, due Thursday, December 17, 11:59 pm)

The final document is a three-part reflection on (1) teamwork throughout the semester, (2) the potential
effects of agile practices, and (3) open source.

1. Teamwork: You have been in teams over the course of this semester (HW 1-4, 6). Look back on
the entire semester and reflect on your team experiences. The following questions may guide

you: What has worked, what hasn’t? If you could start 313 or another course over with the same
team, what would you change? What have you learned about teamwork and your role in
teamwork?
(We would also appreciate feedback on what we can do next year to help students work more
effectively in teams, bearing in mind that the instructor-assigned heterogeneous teams of 3-5
students is non-negotiable. We anticipate problems as part of the learning experience, but would
like to avoid unduly frustrating situations.)

2. Agile practices: Your teamwork this semester likely did not include many agile practices, such
as standup meetings, pair programming, or test-driven development. Discuss which of those
practices could have helped in your homeworks and how they may have addressed team issues.
You may also relate those practices to other experiences outside the course. Be specific, pointing
out problematic situations that actually arose and identify which practices could have helped,
why, and how.

3. Open source: Reflect on your view of the open source movement and its ideals and related
business models. In our initial survey, most of you indicated that you had very limited prior
experience with open source. Have your views changed? The following questions may guide your
reflection: Why have/haven’t you contributed previously? Which claims of the open source
movement are supported by your experience in this (and other) projects? Do you expect to
contribute to open source in the future?

Aim not to exceed 3 pages (soft limit). As in other homeworks, a good reflection document will include
concrete statements about lessons learned, with clear supporting evidence, such as examples, to support
them. The questions within the three topics are provided as initial guidance; you do not need to cover
them all. A good document will discuss a few issues in depth instead of superficially answering the
questions above. Submit your reflection document as a single PDF with three clear subsections to
Canvas.

Grading and Evaluation

This assignment is worth 320 points. You will be graded as a team (240 points), and as an individual (80
points). The project description contributes 100 points (31%), the report contributes 100 points (31%), the
presentation video contributes 40 points (13%), and the individual reflection contributes 80 points (25%).
You will receive 20 bonus points (6%) if you provide evidence that your change was accepted into the
project.

This assignment is open-ended in many ways, and we expect you to use your judgment on what is
reasonable and to properly identify a project and appropriately scope the work. If you have questions
contact the course staff.

To receive full credit for the initial report document should include:

• A description of the factors you considered in selecting a project and set of tasks, and sufficient
information on the project you selected to inform that decision.

• A clear justification for your decision regarding project selection.
• Evidence that you have been able to successfully compile and run the code.

• Clear, but brief, descriptions of the tasks you are proposing to make, and the requirements for
those tasks, and evidence that the tasks are requested by the community.

• Convincing justification as to why this is a non-trivial task and is appropriately scoped for the
assignment. For full credit, explain why the task is well-suited for teamwork and use reasonable
effort estimation to demonstrate that the tasks are scoped well for the available developer hours.
One way to address this issue badly is to select one independent task per team member (don’t).

• A realistic schedule that includes work items (or tasks), milestones, dependencies, etc, including
time estimates for every work items, indicating work is going to be divided.

• A list of at least two relevant risks and corresponding mitigation strategies
• An outline of the process mechanisms you will adopt.

To receive full credit for the project report, we expect:

• A description of the project and its context and business model
• A clear description of your task(s) and what you did to complete it/them.
• A clear description of your QA strategy and the actually performed QA steps
• A justification why your QA strategy is appropriate for the performed task in the context of the

system and its requirements
• Updated planning documents with a justification explaining deviations.
• Evidence of the submitted code and the described QA activities
• Code of reasonably high quality standards, as usual

To receive full credit for the project video, we expect:

• Participation from all team members.
• Effective communication of the key issues, with sufficient context, within the time limit.
• Content addressing and demonstrating understanding of all three points listed above (High-level

description; project governance and communication; your experiences and insights).
• Constructive feedback for other presentations in class (we’ll release the form ahead of time).

To receive full credit for the individual reflection, we expect:

• A detailed and well-written structured reflection each of the three separate issues.
• A reflection grounded in your experiences from this and prior homework assignments.
• An analysis beyond superficial statements and mere truisms (“I would do enough architecture to

be able to start implementing”) that ties specifically to the context and requirements for a room
reservation system.

• Substantive arguments behind your opinions.

Teamwork

This assignment is to be done in your assigned teams. All parts except the reflection should be done in a
team context and submitted on behalf of the team. You are highly encouraged to openly discuss all issues

that may arise in the process of working within the teams. If severe teamwork issues arise please contact
the course staff.

Appendix: Selecting a Project

You may select any active open source project in any language. There are several guides to helping
newcomers to open source contribute. You might find the following helpful:

● A list of beginner friendly projects: https://github.com/MunGell/awesome-for-beginners
● Github Showcase for new contributors https://github.com/showcases/great-for-new-contributors
● Issues that are labeled “up-for-grabs” https://up-for-grabs.net
● Apache projects (http://www.apache.org/)
● Mozilla projects (https://developer.mozilla.org/en-

US/docs/Introduction#Find_a_bug_we%27ve_identified_as_a_good_fit_for_new_contributors.).
Mozilla has a number of Open Source projects (including Firefox and Thunderbird) that are
actively being developed and they recommend bugs for new contributors.

