
Lecture 2: Metrics and
Measurement

17-313: Foundations of Software Engineering
Claire Le Goues

1

● Reminder: change your zoom display name to be your name! And, please
add a profile pic!

● Assignment 1 is released. It is due Thu Sept 5, 11:59 pm (one week!).
Tuesday, Sept 15!

○ I’m really sorry: we set dates before we added Friday recitations. I’m reshuffling the
schedule to reflect this, the website will be updated soon.

○ This is an individual assignment; we will compose groups this week. But: a comment on
talking with your friends…

○ Get started early, ask for help, and check the #homework-techsupport channel; chances
are decent your questions have been asked by others! Office hours will be scheduled.

● Reading for next Tuesday will be posted shortly.

● If you haven’t filled out the schedule survey, do so after class. 2

Administrivia

● Use measurements as a decision tool to reduce uncertainty

● Understand difficulty of measurement; discuss validity of measurements
● Provide examples of metrics for software qualities and process

● Understand limitations and dangers of decisions and incentives based on
measurements

3

Learning Goals

Software Engineering: Principles,
practices (technical and non-technical)
for confidently building high-quality
software.

6

What does this mean?
How do we know?

à Measurement and
metrics are key

concerns.

CASE STUDY:
THE MAINTAINABILITY INDEX

7

“Maintainability Index calculates an index value between 0 and 100 that represents the relative
ease of maintaining the code. A high value means better maintainability. Color coded ratings
can be used to quickly identify trouble spots in your code. A green rating is between 20 and
100 and indicates that the code has good maintainability. A yellow rating is between 10 and
19 and indicates that the code is moderately maintainable. A red rating is a rating between 0 and
9 and indicates low maintainability.”

8

Visual Studio since 2007

● Index between 0 and 100 representing the relative ease of maintaining the
code.

● Higher is better. Color coded by number:
○ Green: between 20 and 100

○ Yellow: between 10 and 19

○ Red: between 0 and 9.

9

From Visual Studio, since 2007

● "We noticed that as code tended toward 0 it was clearly hard to maintain
code and the difference between code at 0 and some negative value was
not useful."

● "The desire was that if the index showed red then we would be saying
with a high degree of confidence that there was an issue with the code."

10

Design rational (from MSDN blog)

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-
meaning.aspx

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

Maintainability Index =

MAX(0,(171 –
5.2 * log(Halstead Volume) –

0.23 * (Cyclomatic Complexity) –
16.2 * log(Lines of Code)

)*100 / 171)

11

The Index

● Easy to measure

12

Lines of Code
> wc –l file1 file2…

LOC projects
450 Expression Evaluator

2.000 Sudoku, Functional Graph Library
40.000 OpenVPN

80-100.000 Berkeley DB, SQLlight
150-300.000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML
500-800.000 gimp, glibc, mplayer, php, SVN

1.600.000 gcc
6.000.000 Linux, FreeBSD

45.000.000 Windows XP

● Ignore comments and empty lines

● Ignore lines < 2 characters
● Pretty print source code first

● Count statements (logical lines of code)

13

Normalizing Lines of Code

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}

Language Statement factor
(productivity)

Line factor

C 1 1
C++ 2.5 1
Fortran 2 0.8
Java 2.5 1.5
Perl 6 6
Smalltalk 6 6.25
Python 6.5

14

Normalization per Language

Source: http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-
same.html u.a.

http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

● Introduced by Maurice Howard Halstead in 1977

● Halstead Volume =
number of operators/operands *
log2(number of distinct

operators/operands)

● Approximates size of elements and vocabulary

15

Halstead Volume

● main() {
int a, b, c, avg;
scanf("%d %d %d", &a, &b, &c);
avg = (a + b + c) / 3;
printf("avg = %d", avg);

}

16

Halstead Volume - Example

Operators/Operands: main, (), {}, int, a, b, c, avg,
scanf, (), "…", &, a, &, b, &, c, avg, =, a, +, b, +, c,

(), /, 3, printf, (), "…", avg

● Proposed by McCabe 1976

● Based on control flow graph, measures
linearly independent paths through a
program

○ ~= number of decisions

○ Number of test cases needed to achieve branch
coverage

17

Cyclomatic Complexity

if (c1) {
f1();

} else {
f2();

}
if (c2) {

f3();
} else {

f4();
}

M = edges of CFG – nodes of CFG + 2*end points

● 1992 Paper at the International Conference on Software Maintenance by
Paul Oman and Jack Hagemeister

● Developers rated a number of HP systems in C and Pascal

● Statistical regression analysis to find key factors among 40 metrics

18

Origins

COM = percentage of comments

● What do you think of this index? Vote using emoji on the Slack post in
#lectures

● Post a comment to #lectures with (1) the Andrew IDs of the people in your
breakout room, (2) positives/negatives of the metric, and (3) would you
use it, why or why not?

19

PAUSE: discuss for 6 minutes

Thoughts?

● Metric seems attractive
● Easy to compute
● Often seems to match

intuition

● Parameters seem almost
arbitrary, calibrated in single
small study code (few
developers, unclear statistical
significance)

● All metrics related to size: just
measure lines of code?

● Original 1992 C/Pascal
programs potentially quite
different from Java/JS/C# codehttp://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

20

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

MEASUREMENT FOR DECISION MAKING
IN SOFTWARE DEVELOPMENT

21

● Measurement is the empirical, objective assignment of numbers,
according to a rule derived from a model or theory, to attributes of
objects or events with the intent of describing them. – Craner, Bond,
“Software Engineering Metrics: What Do They Measure and How Do We
Know?”

● A quantitatively expressed reduction of uncertainty based on one or more
observations. – Hubbard, “How to Measure Anything …”

22

What is Measurement?

● IEEE 1061 says:

● “A software quality metric is a function whose inputs are software data
and whose output is a single numerical value that can be interpreted as
the degree to which software processes a given attribute that affects its
quality.”

23

Software quality metric

TEMPTATION OF SOFTWARE METRICS

24

● IEEE 1061 definition: “A software quality metric is a function whose inputs
are software data and whose output is a single numerical value that can
be interpreted as the degree to which software processes a given
attribute that affects its quality.”

● Metrics have been proposed for many quality attributes; may define own
metrics

25

Software Quality Metrics

External attributes: Measuring Quality

26
McCall model has 41 metrics to measure 23 quality
criteria from 11 factors

Decomposition of Metrics

27

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

● Number of Methods per Class

● Depth of Inheritance Tree
● Number of Child Classes

● Coupling between Object Classes
● Calls to Methods in Unrelated Classes

● …

28

Object-Oriented Metrics

● Comment density

● Test coverage
● Component balance (system breakdown optimality and component size

uniformity)
● Code churn (number of lines added, removed, changed in a file)

● …

29

Other quality metrics?

What software qualities do we care about? (examples)

● Scalability
● Security
● Extensibility
● Documentation
● Performance
● Consistency
● Portability

● Installability
● Maintainability
● Functionality (e.g., data

integrity)
● Availability
● Ease of use

30

What process qualities do we care about? (examples)

● On-time release
● Development speed
● Meeting efficiency
● Conformance to processes
● Time spent on rework
● Reliability of predictions
● Fairness in decision

making

● Measure time, costs,
actions, resources, and
quality of work packages;
compare with predictions

● Use information from issue
trackers, communication
networks, team structures,
etc…

31

● If X is something we care about, then X, by definition, must be detectable.
○ How could we care about things like “quality,” “risk,” “security,” or “public image” if these

things were totally undetectable, directly or indirectly?

○ If we have reason to care about some unknown quantity, it is because we think it
corresponds to desirable or undesirable results in some way.

● If X is detectable, then it must be detectable in some amount.
○ If you can observe a thing at all, you can observe more of it or less of it

● If we can observe it in some amount, then it must be measurable.

32

Everything is measurable

D. Hubbard, How to Measure Anything, 2010

● Fund project?

● More testing?
● Fast enough? Secure enough?

● Code quality sufficient?
● Which feature to focus on?

● Developer bonus?

● Time and cost estimation? Predictions reliable?

33

Measurement for Decision Making

34

Trend analyses

● Monitor many projects or many modules, get typical values for metrics

● Report deviations

35

Benchmark-Based Metrics

https://semmle.com/insights/

https://semmle.com/insights/

● What properties do we care about, and how do we measure it?

● What is being measured? Does it (to what degree) capture the thing you
care about? What are its limitations?

● How should it be incorporated into process? Check in gate? Once a
month? Etc.

● What are potentially negative side effects or incentives?

36

Questions to consider.

MEASUREMENT IS DIFFICULT

37

38

The streetlight effect

● A known observational
bias.

● People tend to look for
something only where it’s
easiest to do so.

○ If you drop your keys at
night, you’ll tend to look for
it under streetlights.

39

40

● Bad statistics: A basic misunderstanding of measurement theory and
what is being measured.

● Bad decisions: The incorrect use of measurement data, leading to
unintended side effects.

● Bad incentives: Disregard for the human factors, or how the cultural
change of taking measurements will affect people.

41

What could possibly go wrong?

● Construct – Are we measuring what we intended to measure?

● Predictive – The extent to which the measurement can be used to explain
some other characteristic of the entity being measured

● External validity – Concerns the generalization of the findings to contexts
and environments, other than the one studied

42

Measurements validity

● In 1995, the UK Committee on Safety of Medicines issued the following
warning: "third-generation oral contraceptive pills increased the risk of
potentially life-threatening blood clots in the legs or lungs twofold -- that
is, by 100 percent”

43

Lies, damned lies, and…

● “…of every 7,000 women who took the earlier, second-generation oral
contraceptive pills, about one had a thrombosis; this number increased to
two among women who took third-generation pills…”

● “…The absolute risk increase was only one in 7,000, whereas the relative
increase (among women who developed blood clots) was indeed 100
percent.”

44

…statistics

45

Understanding your data

● Scale: the type of data being measured.

● The scale dictates what sorts of analysis/arithmetic is legitimate or
meaningful.

● Your options are:
○ Nominal: categories

○ Ordinal: order, but no magnitude.

○ Interval: order, magnitude, but no zero.

○ Ratio: Order, magnitude, and zero.

○ Absolute: special case of ratio.

46

Measurement scales

47

Summary of scales

● Entities classified with respect to a certain attribute. Categories are jointly
exhaustive and mutually exclusive.

○ No implied order between categories!

● Categories can be represented by labels or numbers; however, they do
not represent a magnitude, arithmetic operation have no meaning.

● Can be compared for identity or distinction, and measurements can be
obtained by counting the frequencies in each category. Data can also be
aggregated.

48

Nominal/categorical scale

Entity Attribute Categories

Application Purpose E-commerce, CRM, Finance

Application Language Java, Python, C++, C#

Fault Source assignment, checking, algorithm, function, interface,
timing

● Ordered categories: maps a measured attribute to an ordered set of values,
but no information about the magnitude of the differences between elements.

● Measurements can be represented by labels or numbers, BUT: if numbers are
used, they do not represent a magnitude.

○ Honestly, try not to do that. It eliminates temptation.

● You cannot: add, subtract, perform averages, etc (arithmetic operations are
out).

● You can: compare with operators (like “less than” or “greater than”), create
ranks for the purposes of rank correlations (Spearman’s coefficient, Kendall’s
τ).

49

Ordinal scale

Entity Attribute Values

Application Complexity Very Low, Low, Average, High, Very High

Fault Severity 1 – Cosmetic, 2 – Moderate, 3 – Major, 4 – Critical

● Has order (like ordinal scale) and magnitude.
○ The intervals between two consecutive integers represent equal amounts of the attribute

being measured.

● Does NOT have a zero: 0 is an arbitrary point, and doesn’t correspond to
the absence of a quantity.

● Most arithmetic (addition, subtraction) is OK, as are mean and dispersion
measurements, as are Pearson correlations. Ratios are not meaningful.

○ Ex: The temperature yesterday was 64 oF, and today is 32 oF. Is today twice as cold as
yesterday?

● Incremental variables (quantity as of today – quantity at an earlier time)
and preferences are commonly measured in interval scales.

50

Interval scale

● An interval scale that has a true zero that actually represents the absence
of the quantity being measured.

● All arithmetic is meaningful.

● Absolute scale is a special case, measurement simply made by counting
the number of elements in the object.

○ Takes the form “number of occurrences of X in the entity.”

51

Ratio scale

Entity Attribute Values

Project Effort Real numbers

Software Complexity Cyclomatic complexity

● For causation
○ Provide a theory (from domain knowledge, independent of data)

○ Show correlation

○ Demonstrate ability to predict new cases (replicate/validate)

52

http://xkcd.com/552/

53

○ If you look only at the coffee consumption → cancer relationship, you can get very
misleading results

○ Smoking is a confounder

54

Confounding variables

Coffee
consumption

Smoking

Cancer

Associations

Causal relationship

● “Only four, out of twenty-four commonly used object-oriented metrics,
were actually useful in predicting the quality of a software module when
the effect of the module size was accounted for.”

● Khaled El Emam, Saida Benlarbi, and Nishith Goel ,September 1999

55

Effect of Class Size on the Validity of Object-
oriented Metrics

56

● There seems to be a general misunderstanding to the effect that a
mathematical model cannot be undertaken until every constant and
functional relationship is known to high accuracy. This often leads to the
omission of admittedly highly significant factors (most of the “intangibles”
influences on decisions) because these are unmeasured or
unmeasurable. To omit such variables is equivalent to saying that they
have zero effect... Probably the only value known to be wrong…

○ J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

57

The McNamara Fallacy

● Measure whatever can
be easily measured.

● Disregard that which cannot be measured easily.

● Presume that which cannot be measured easily is not important.
● Presume that which cannot be measured easily does not exist.

58

McNamara fallacy

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-
numbers-in-education/

● Defect density = Known bugs / line of code

● System spoilage = time to fix post-release defects /
total system development time

● Post-release vs pre-release
● What counted as defect? Severity? Relevance?

● What size metric used?

● What quality assurance mechanisms used?
● Little reference data publicly available;

typically 2-10 defects/1000 lines of code

59

Defect Density

DISCUSSION: MEASURING USABILITY?

60

● Automated measures on code repositories

● Use or collect process data
● Instrument program (e.g., in-field crash reports)

● Surveys, interviews, controlled experiments, expert judgment
● Statistical analysis of sample

61

Example: Measuring usability.

METRICS AND INCENTIVES

62

http://dilbert.com/strips/comic/1995-11-13/

Goodhart’s law: “When a measure becomes a
target, it ceases to be a good measure.”

63

64

● Lines of code per day?
○ Industry average 10-50 lines/day

○ Debugging + rework ca. 50% of time

● Function/object/application points per month

● Bugs fixed?
● Milestones reached?

65

Productivity Metrics

66

Stack Ranking

● What happens when developer bonuses are based on
○ Lines of code per day?

○ Amount of documentation written?

○ Low number of reported bugs in their code?

○ Low number of open bugs in their code?

○ High number of fixed bugs?

○ Accuracy of time estimates?

67

Incentivizing Productivity

Autonomy
Mastery
Purpose

Can extinguish intrinsic motivation
Can diminish performance

Can crush creativity
Can crowd out good behavior

Can encourage cheating, shortcuts,
and unethical behavior
Can become addictive

Can foster short-term thinking

68

● Most software metrics are controversial
○ Usually only plausibility arguments, rarely rigorously validated

○ Cyclomatic complexity was repeatedly refuted and is still used

○ “Similar to the attempt of measuring the intelligence of a person in terms of the
weight or circumference of the brain”

● Use carefully!
● Code size dominates many metrics
● Avoid claims about human factors (e.g., readability) and quality,

unless validated
● Calibrate metrics in project history and other projects
● Metrics can be gamed; you get what you measure 69

Warning

● Metrics tracked using tools and processes (process metrics like time, or
code metrics like defects in a bug database).

● Expert assessment or human-subject experiments (controlled
experiments, talk-aloud protocols).

● Mining software repositories, defect databases, especially for trend
analysis or defect prediction.

○ Some success e.g., as reported by Microsoft Research

● Benchmarking (especially for performance).

70

(Some) strategies

BONUS SLIDES

71

● Set solid measurement objectives and plans.

● Make measurement part of the process.
● Gain a thorough understanding of measurement.

● Focus on cultural issues.
● Create a safe environment to collect and report true data.

● Cultivate a predisposition to change.

● Develop a complementary suite of measures.

72

Factors in a successful measurement program

Carol A. Dekkers and Patricia A. McQuaid,
“The Dangers of Using Software Metrics to
(Mis)Manage”, 2002.

Kaner’s questions when choosing a metric

1. What is the purpose of this
measure?

2. What is the scope of this measure?
3. What attribute are you trying to

measure?
4. What is the attribute’s natural

scale?
5. What is the attribute’s natural

variability?

6. What instrument are you using to
measure the attribute, and what reading
do you take from the instrument?

7. What is the instrument’s natural scale?
8. What is the reading’s natural variability

(normally called measurement error)?
9. What is the attribute’s relationship to the

instrument?
10. What are the natural and foreseeable

side effects of using this instrument?

73

Cem Kaner and Walter P. Bond. “Software Engineering Metrics:
What Do They Measure and How Do We Know?” 2004

● Measurement is difficult but important for decision making

● Software metrics are easy to measure but hard to interpret, validity often
not established

● Many metrics exist, often composed; pick or design suitable metrics if
needed

● Careful in use: monitoring vs incentives

● Strategies beyond metrics

74

Summary

Further Reading on Metrics

● Sommerville. Software Engineering. Edition 7/8, Sections 26.1, 27.5, and
28.3

● Hubbard. How to measure anything: Finding the value of intangibles in
business. John Wiley & Sons, 2014. Chapter 3

● Kaner and Bond. Software Engineering Metrics: What Do They Measure
and How Do We Know? METRICS 2004

● Fenton and Pfleeger. Software Metrics: A rigorous & practical approach.
Thomson Publishing 1997

75

● "Suppose you could work with a team of data scientists and data analyists
who specialize in studying how software is developed.
Please list up to five questions you would like them to answer. Why do
you want to know? What would you do with the answers?"

76

Microsoft Survey (2014)

Andrew Begel and Thomas Zimmermann. "Analyze this! 145 questions for data scientists in
software engineering." ICSE. 2014.

● How do users typically use my application?

● What parts of a software product are most used and/or loved by
customers?

● How effective are the quality gates we run at checkin?
● How can we improve collaboration and sharing between teams?

● What are best key performance indicators (KPIs) for monitoring services?

● What is the impact of a code change or requirements change to the
project and tests?

77

Top Questions

● What is the impact of tools on productivity?

● How do I avoid reinventing the wheel by sharing and/or searching for
code?

● What are the common patterns of execution in my application?
● How well does test coverage correspond to actual code usage by our

customers?

● What kinds of mistakes do developers make in their software? Which
ones are the most common?

● What are effective metrics for ship quality?

78

Top Questions

● Which individual measures correlate with employee productivity (e.g.,
employee age, tenure, engineering skills, education, promotion velocity,
IQ)?

● Which coding measures correlate with employee productivity (e.g., lines of
code, time it take to build the software, a particular tool set, pair
programming, number of hours of coding per day, language)?

● What metrics can be used to compare employees?
● How can we measure the productivity of a Microsoft employee?

● Is the number of bugs a good measure of developer effectiveness?
● Can I generate 100% test coverage?

79

Bottom Questions

