
Lecture 4: Intro To Process
Claire Le Goues

1

Learning Goals
• Wrap up the takeaways from Boeing.
• Recognize the importance of process
• Understand the difficulty of measuring progress
• Identify why software development has project characteristics
• Use milestones for planning and progress measurement
• Understand backlogs and user stories
• Meet your team!

2

3

Boeing: Takeaways

PROCESS

4

Software Process
“The set of activities and associated results that produce a software
product”

5

Sommerville, SE, ed. 8

How to develop software?
1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

6

7

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

8

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Productive Coding

9

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Productive Coding

Process: Cost and Time estimates, Writing Requirements, Design,
Change Management, Quality Assurance Plan,

Development and Integration Plan

10

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

Trashing / Rework

Process

Example of Process Decisions
• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes
• Track all reported bugs
• Review requirements and code
• Break down development into smaller tasks and schedule and monitor

them
• Planning and conducting quality assurance
• Have daily status meetings
• Use Docker containers to push code between developers and

operation

11

Example process issues
• Change Control: Mid-project informal agreement to changes suggested

by customer or manager. Project scope expands 25-50%
• Quality Assurance: Late detection of requirements and design issues.

Test-debug-reimplement cycle limits development of new features.
Release with known defects.

• Defect Tracking: Bug reports collected informally, forgotten
• System Integration: Integration of independently developed

components at the very end of the project. Interfaces out of sync.
• Source Code Control: Accidentally overwritten changes, lost work.
• Scheduling: When project is behind, developers are asked weekly for

new estimates.

12

13

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

Process

Trashing / Rework

Hypothesis
• Process increases flexibility and efficiency

• Upfront investment for later greater returns

14

15

Planning

16

17

Estimating Effort

Task: Estimate Time
• A: Simple web version of the Monopoly boardgame with

Pittsburgh street names
o Team: just you

• B: Bank smartphone app
o Team: you with team of 4 developers, one experienced with iPhone

apps, one with background in security

• Estimate in 8h days (20 work days in a month, 220 per year)

18

Revise Time Estimate
• Do you have comparable experience to base an estimate off of?
• How much design do you need for each task?
• Break down the task into ~5 smaller tasks and estimate them.
• Revise your overall estimate if necessary

19

20

π

21

Measuring Progress?
• “I’m almost done with the app. The frontend is almost fully

implemented. The backend is fully finished except for the one
stupid bug that keeps crashing the server. I only need to find
the one stupid bug, but that can probably be done in an
afternoon. We should be ready to release next week.”

22

Measuring Progress?
• Developer judgment: x% done
• Lines of code?
• Functionality?
• Quality?

23

Milestones and deliverables
• Making progress observable, especially for software
• Milestone: clear end point of a (sub)tasks

o For project manager
o Reports, prototypes, completed subprojects
o "80% done" not a suitable mile stone

• Deliverable: Result for customer
o Similar to mile stone, but for customers
o Reports, prototypes, completed subsystems

25

Brief intro to Scrum

26

Elements of Scrum
• Products:

o Product Backlog
o Sprint Backlog

• Process:
o Sprint Planning Meeting
o Daily Scrum Meeting
o Sprint Retrospective
o Sprint Review Meeting

27

Product Backlog/Sprint Backlog
• The product backlog is all the features for the product
• The sprint backlog is all the features that will be worked on for

that sprint. These should be broken down into discrete tasks:
o Fine-grained
o Estimated
o Assigned to individual team members
o Acceptance criteria should be defined

• User Stories are often used

28

Backlog – information radiators

29

Scrum Meetings
• Sprint Planning Meeting

o Entire Team decides together what to tackle for that sprint

• Daily Scrum Meeting
o Quick Meeting to touch base on :

§ What have I done? What am I doing next? What am I stuck on/need help?

• Sprint Retrospective
o Review sprint process

• Sprint Review Meeting
o Review Product

30

User Stories

Source: https://www.flickr.com/photos/jakuza/2728096478 31

User Stories

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/ 32

The card
• “As a [role], I want [function], so that [value]”
• Should fit on a 3x5 card

33

The conversation
• An open dialog between everyone working on the project and

the client

• Split up Epic Stories if needed

34

The Confirmation
• A confirmation criterion that will show when the task is

completed
• Could be automated or manual

35

Exercise

36

How to evaluate user story?

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/

37

Independent
• Schedule in any order.
• Not overlapping in concept
• Not always possible

38

Negotiable
• Details to be negotiated during development
• Good Story captures the essence, not the details

39

Valuable
• This story needs to have value to someone (hopefully the

customer)
• Especially relevant to splitting up issues

40

Estimable
• Helps keep the size small
• Ensure we negotiated correctly
• “Plans are nothing, planning is everything” -Dwight D.

Eisenhower

41

Small
• Fit on 3x5 card
• At most two person-weeks of work
• Too big == unable to estimate

42

Testable
• Ensures understanding of task
• We know when we can mark task “Done”
• Unable to test == do not understand

43

Activity

44

TEAMWORK (STUDENT TEAMS)
(MORE ON TEAMS IN REAL PROJECTS LATER IN THE COURSE)

45

Expectations
• Meet initially and then regularly
• Review team policy
• Divide work and integrate
• Establish a process
• Set and document clear responsibilities and expectations

o Possible Roles: Coordinator, Scribe, Checker, Monitor
o Rotate roles every assignment

• Every team member should understand the entire solution

46

Team Policies
• see document

• Make agreements explicit and transparent
• Most teams will encounter some problem

47

Dealing with problems
• Openly report even minor team issues in individual part of

assignments
• In-class discussions and case studies
• Additional material throughout semester
• We will attend one team meeting

48

Planning and In-Team Communication
• Asana, Trello, Microsoft Project, …
• Github Wiki, Google docs, …
• Email, Slack, Facebook groups, …

49

Homework 2
Discussion time

50

Further Reading
• McConnell. Software Project Survival Guide. Microsoft Press

1998, Chapter 3
• Sommerville. Software Engineering. 8th Edition. Addison-Wesley

2007. Chapters 5 "Project Planning" and 26 "Software Cost
Estimation"

51

