
Code Archeology
Claire Le Goues

1

2

Reminder: if you are in Sections A/B, fill out our
survey so we can figure out what we’re doing.

Technical homework question protocol.
• First: we want to help you, don’t

suffer for days!
o Some of you don’t ask enough

questions.

• But: the online environment can
make it almost a little, well, too
easy.

3

Chris is great! But
there’s only one of

him, and 60+ of
you…

Requests for technical homework assignment.
• Please read the ”protocol” I posted on #announcements
• Highlights:

o Check the #homework-techsupport channel to see if someone else has had the
same problem.

o Ask your question on #homework-techsupport.
§ Do you REALLY want us to have both piazza AND Slack? No, you do not.

o Once it is answered, do not delete your question, that misses the whole point.
o If you insist on DMing instead, DM all three of us.

4

Task: Estimate Time
• A: Simple web version of the Monopoly boardgame with Pittsburgh street

names
o Team: just you

• Left out: two outliers, 180 and 1125

5

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

Days

Learning goals
• Ask for technical help on homework effectively while being a good citizen.
• Understand and scope the task of taking on and understanding a new and

complex piece of existing software.
• Appreciate the importance of configuring an effective IDE.
• Enumerate both static and dynamic strategies for understanding and

modifying a new codebase.

6

Context: big ole pile of code.

7

…do something to it.
Like: Fix a bug, implement a feature, write a test…

You cannot understand the entire
system.

8

Goal: develop and test a working model or set of working
hypotheses about how (some part of) a system works.
• Working model: an understanding of the pieces of the system

(components), and the way they interact (connections).
• It is common in practice to consult documentation, experts.
• Prior knowledge/experience is also useful (see: frameworks, architectural

patterns, design patterns).
• Today, we focus on individual information gathering via observation,

probes, and hypothesis testing.

9

TWO PROPERTIES OF SOFTWARE THAT ARE USUALLY
ANNOYING THAT WE CAN TAKE ADVANTAGE OF.

10

Software constantly changes à Software is easy to change!

11

Is this wall
load-bearing?

Guess so!

Software is a big redundant mess à there’s always something to
copy as a starting point!

12

BUT FIRST! AN EXERCISE.

NYTimes quiz: http://bit.ly/problemQuiz

13

http://bit.ly/problemQuiz

Beware of cognitive biases.

14

Beware of cognitive biases
• anchoring
• confirmation bias
• congruence bias: The tendency to test hypotheses exclusively through direct testing, instead of testing

possible alternative hypotheses
• conservatism (belief revision)
• curse of knowledge
• default effect
• expectation bias
• overconfidence effect
• plan continuation bias
• pro innovation bias
• recency illusion

15

https://en.wikipedia.org/wiki/List_of_cognitive_biases

https://en.wikipedia.org/wiki/List_of_cognitive_biases

Static (+dynamic) information gathering
• Basic needs:

o Code/file search and navigation
o Code editing (probes)
o Execution of code, tests
o Observation of output (observation)

• Many choices here on tools! Depends on circumstance.
o grep/find/command line/emacs
o A decent IDE
o Coverage computation
o Testing tools
o Debugger.
o Etc.

16

At the command line: grep and find!
I will find a tutorial and share it.

Static information gathering: use tools to help manage
complexity.
• Please configure and use a

legitimate IDE.
o Don’t have a favorite? We like VSCode.
o Configure: something like

IntelliConfigure

• Why?
o “search all files”
o “jump to definition”

• Remember: real software is too
complicated to keep in your head.

17

Consider: Documentation and tutorials, judiciously
• Can teach you about general

structure, architecture.
o Forward-reference to architectural

patterns!

• As you gain experience, you will
recognize more of these, and you
will immediately know something
about how the program works.

• For example, next time you work
on a webapp…

18

Consider: Documentation and tutorials, judiciously

19

Dynamic Information Gathering: High-level principles
• Key principle 1: change is a useful primitive to inform mental models about a

software system.
• Key principle 2: systems almost always provide some kind of starting point.
• Put simply:

1. Build it.
2. Run it.
3. Change it.
4. Run it again.

• Can provide information both bottom up or top down, depending on the
situation.

20

Step 0: sanity check basic model + hypotheses.
• Confirm that you can build and run the code.

o Ideally both using the tests provided, and by hand.

• Confirm that the code you are running is the code you built.
• Confirm that you can make an externally visible change.

• How? Where? Starting points:
o Run an existing test, change it.
o Write a new test.
o Change the code, write or rerun a test that should notice the change.

21

Demonstration: Live Coding By Chris

22

