
Requirements 1: Overview
and Concepts

Claire Le Goues

September 17, 2020

215-313 Software Engineering

Administrivia
• Calling into Section B
• A new fork of mayan-edms is available to you for HW2!
• HW2 PDF has been updated, and messages on general/announcements should help.

• Should produce a container where changes to the python + main/base.css will reflect
immediately in the app.
o Not included in the mounted volume: included dependencies, bootstrap, or any of the

special/page-specific css.
o But: adding those is straightforward.

REFLECTIONS ON REFLECTIONS
Examples adapted arbitrarily from prior years without identifying information!

Reflection documents

Shallow
• Recite facts about what happened

without adding anything.

• Recite statements from class without
connecting to experience.

• State lessons learned without any
reason why.

Good
• Extrapolate from the facts to

add insight.
• Meaningfully connect prior

experience or class material to
assignment experience.

• Support lessons learned with
evidence.

Shallow reflection examples
[PROCESS]
At our first meeting, we developed an initial outline of our approach. This was followed by preparing a list
of tasks which were required for implementing the X system. Next, we divided the tasks among ourselves
and came up with a rough timeline of the process to be followed.”
[SCHEDULE]
“Although we managed to meet all the milestones and implement all the desired features, the exact dates
for the same could not be followed towards the end.”
[PLANNING]
“Learning how to use API X took a little longer than expected, which caused a setback of a day; but overall
we managed to complete the entire project before the deadline and adhered to the timeline.”
[TEAM WORK / COMMUNICATION]
“We all agreed to use tool Y to keep in touch. We used it to announce when we started or completed
individual tasks, current milestone statuses.. We also used Y to schedule a group meeting for the
integration portion of our coding assignment”

Good reflection examples
[PLANNING / PROCESS]
“Since I was interested in the planning, we decided as a team I would be in charge of documenting our
progress.. It worked really well to have one person managing what needed to get done or who needed to do
it, and ensuring a shared single vision and set of goals as a group. However, there exist negatives
approaching things this way…I found that my teammates sometimes would rely on me too heavily.”
[TEAM WORK / COMMUNICATION]
“An example of something that [would] work well is...issue tracking – something I asked them to do since
first meeting. It’s easy to forget this information over time... If we had simply reminded ourselves on a
regular basis, we would have had fewer problems forgettng these things.”
[PLANNING]
“People seemed to be annoyed because X “was not doing any work”. I believe X did the least amount of
work, but we also assigned X the least amount of work. I wonder if this can all be traced back to the fact
that X could not attend our first group meeting”

More good examples
[TEAMWORK]
“It helps to say ‘thank you’ before complaining about a teammate’s work. Only take conflict-
inducing action if you think it is extremely important and are willing to follow up. Otherwise,
you are wasting everyone’s time. Would we have treated each other differently if we had
known we would be partnered up on more than just this assignment for the class?”
[TEAMWORK]
“two takeaways I had from this project are :
– It is best to present yourself as someone who is willing to help out, and do more than what
was originally asked of you. This way, if people decline your offer to help out, they will be okay
with the fact that you may not be working as hard as them at that point in time.
– Respect other people’s time and work, and take that into consideration when you decide to
criticize their work or bring up issues. “

Also
• The homework document includes bulleted lists and prose outlining what

a “good solution” looks like.
• Consider checking your submission against it, at the very least before

submitting, if not sooner.

Learning goals
• Explain the importance and challenges of requirements in software

engineering.
• Explain how and why requirements articulate the relationship between a

desired system and its environment. Identify assumptions.
• Distinguish between and give examples of: functional and quality

requirements; informal statements and verifiable requirements.
• State quality requirements in measurable ways

10

Overly simplified definition.

Requirements say what the system will do (and
not how it will do it).

11

Healthcare.gov

12

Fred Brooks, on requirements.
• The hardest single part of building a software system is

deciding precisely what to build.
• No other part of the conceptual work is as difficult as

establishing the detailed technical requirements ...
• No other part of the work so cripples the resulting system if

done wrong.
• No other part is as difficult to rectify later.

— Fred Brooks

13

A problem that stands the test of time…
A 1994 survey of 8000 projects at 350 companies found: 31% of projects canceled before
completed; 9% of projects delivered on time, within budget in large companies, 16% in small
companies.

o Similar results reported since.
Causes:

1. Incomplete requirements (13.1%)
2. Lack of user involvement (12.4%)
3. Lack of resources (10.6%)
4. Unrealistic expectations (9.9%)
5. Lack of executive support (9.3%)
6. Changing requirements and specifications (8.7%)
7. Lack of planning (8.1%)
8. System no longer needed (7.5%) .

14

WHY IS THIS HARD?

15

Communication problem

Goal: figure out what
should be built.
Express those ideas so
that the correct thing is
built.

16

Overall problems
• Involved subproblems?
• Required functionality?
• Nice to have functionality?
• Expected qualities?
• How fast to deliver at what quality for what price?

17

EXAMPLE
https://vimeo.com/41800652

18

User Stories

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/ 19

The card
• “As a [role], I want [function], so that [value]”
• Should fit on a 3x5 card

20

How to evaluate user story?

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/

21

Requirements in software projects

Requirements
Document

Project estimations
(size, cost, schedules)

Project workplan

Software prototype,
mockup

Follow-up directives

Software architecture

Call for tenders,
proposal evaluation

Quality Assurance
checklists

Project contract

Software evolution
directives

Software documentation

Acceptance test data

Implementation
directives

User manual

Less simplified definition: online shopping
• Stories: Scenarios, Use Cases, and user stories

“After the customer submits the purchase information and the
payment has been received, the order is fulfilled and shipped to the
customer’s shipping address.”

• Optative statements
The system shall notify clients about their shipping status
• Domain Properties and Assumptions

Every product has a unique product code
Payments will be received after authorization

23

What is requirements engineering?
• Knowledge acquisition – how to capture relevant detail about

a system?
o Is the knowledge complete and consistent?

• Knowledge representation – once captured, how do we
express it most effectively?
o Express it for whom?
o Is it received consistently by different people?

• You may sometimes see a distinction between the
requirements definition and the requirements specification.

24

Functional Requirements
• What the machine should do
o Input
o Output
o Interface
o Response to events

• Criteria:
o Completeness: All requirements are documented
o Consistency: No conflicts between requirements
o Precision: No ambiguity in requirements

25

Quality/Non-functional requirements
• Specify not the functionality of the system, but the

quality with which it delivers that functionality.
• Can be more critical than functional requirements
o Can work around missing functionality
o Low-quality system may be unusable

• (We’ll come back to these in a bit.)

26

Functional requirements and implementation bias

Requirements say what the system will do (and
not how it will do it).

Why not “how”?

27

THE WORLD AND THE MACHINE

28

29

Environment and the Machine

Machine DomainEnvironmental Domain

Requirements
Domain Knowledge

Computers
Software Programs

Specifications

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997.

Environment Software

Input devices
(e.g. sensors)

Output devices
(e.g. actuators)

monitored
variables

input data

output resultscontrolled
variables

30

Actions of an ATM customer:
withdrawal-request(a, m)
Properties of the environment:
balance(b, p)

Actions of an ATM machine:
withdrawal-payout(a, m)
Properties of the machine:
expected-balance(b, p)

What other models of the world
do machines maintain?

Domain knowledge
• Refinement is the act of translating requirements into

specifications (bridging the gap!)
• Requirements: desired behavior (effect on the environment) to

be realized by the proposed system.
• Assumptions or domain knowledge: existing behavior that is

unchanged by the proposed system.
o Conditions under which the system is guaranteed to operate

correctly.
o How the environment will behave in response to the system’s

outputs.

31

Some gaps must remain…
• Unshared actions cannot be accurately expressed in the

machine
o People can jump over gates (enter without unlocking)
o People can steal or misplace inventory

• Future requirements are also not directly implementable
o Phone system: “After all digits have been dialed, do ring-back,

busy-tone or error-tone.”
o …how do you know the user is done dialing?

32

Assumptions?

33

IMPLEMENTATION BIAS

34

Requirements say what the system will do (and
not how it will do it).

Why not “how”?

35

Avoiding implementation bias
• Requirements describe what is observable at the

environment-machine interface.
• Indicative mood describes the environment (as-is)
• Optative mood to describe the environment with the

machine (to-be).

36

This can be subtle…
• “The dictionary shall be stored in a hash table” vs. “the

software shall respond to requests within 5 seconds.”
• Instead of “what” vs. “how”, ask “is this requirement only

a property of the machine domain?”
• Or is there some application domain phenomenon that

justifies it?

QUALITY REQUIREMENTS

38

Functional Requirements
• What the machine should do
o Input
o Output
o Interface
o Response to events

• Criteria
o Completeness: All requirements are documented
o Consistency: No conflicts between requirements
o Precision: No ambiguity in requirements

39

Quality (non-funct.) requirements
• Specify not the functionality of the system, but the

quality with which it delivers that functionality.
• Can be more critical than functional requirements
o Can work around missing functionality
o Low-quality system may be unusable

• Examples?

40

Here’s the thing…
• Who is going to ask for a slow, inefficient, unmaintainable

system?
• A better way to think about quality requirements is as

design criteria to help choose between alternative
implementations.

• Question becomes: to what extent must a product satisfy
these requirements to be acceptable?

41

42

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

DeadlineVariability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Selling videos on the web?

Expressing quality requirements
• Requirements serve as contracts: they should be

testable/falsifiable.
• Informal goal: a general intention, such as ease of use.
o May still be helpful to developers as they convey the

intentions of the system users.

• Verifiable non-functional requirement: A statement using
some measure that can be objectively tested.

43

Examples
• Confidentiality requirement: A non-staff patron may never know

which books have been borrowed by others.
• Privacy requirement: The diary constraints of a participant may

never be disclosed to other invited participants without his or her
consent.

• Integrity req: The return of book copies shall be encoded correctly
and by library staff only.

• Availability req: A blacklist of bad patrons shall be made available
at any time to library staff. Information about train positions shall
be available at any time to the vital station computer.

44Source: van Lamsweerde. Requirements Engineering: … Wiley 2009

Examples
• Informal goal: “the system should be easy to use by

experienced controllers, and should be organized such
that user errors are minimized.”

• Verifiable non-functional requirement: “Experienced
controllers shall be able to use all the system functions
after a total of two hours training. After this training, the
average number of errors made by experienced users
shall not exceed two per day, on average.”

45

Exercise: back to simple
• Let’s write some quality

requirements!
• Try to write an informal

goal, and then turn it into
a verifiable non-functional
requirement.

Requirements metrics
Property Measure

47

ACTIVITIES OF REQUIREMENTS ENGINEERING

51

Typical Steps
• Identify stakeholders
• Understand the domain
o Analyze artifacts, interact with stakeholders

• Discover the real needs
o Interview stakeholders

• Explore alternatives to address needs

52

Question
• Who is the system for?
• Stakeholders:
o End users
o System administrators
o Engineers maintaining the system
o Business managers
o …who else?

53

Further Reading
• Van Lamsweerde A. Requirements engineering: From

system goals to UML models to software. John Wiley &
Sons; 2009. Chapter 1

54

