
SE4ML/AI, part 2: from
principles to production

Claire Le Goues Michael Hilton

Administrivia
• Homework 2 reflections due today.
• Homework 3 out this evening.
• We won’t track explicit lecture activities on

November 3rd, and helpfully remind you that we are
posting all lecture videos to Canvas.

• Gentle/motherly reminder to get your flu shots!

Learning goals
• Understand the lower-level process of ML in SE, from model

building/experimentation to deployment.
• Characterize the different challenges and design goals at the

different phases (experimentation vs. production).
• Describe strategies for sanity checking data, features, and

models.
• Provide key tests and properties to reduce technical debt and

improve reliability for both data and ML infrastructure.

3

Internship leads
• We have a few leads, once we have something solid,

we will post them on slack

Resumes

My Simple rules about Resumes

Top Half, focus on what makes you special

Bottom Half, what makes you good enough

An aside on (remote) group work

Group work serves our learning goals
• Software engineering involves collaborating to construct beyond the

complexity manageable by a single person.
• Collaboration (along with software engineering process) is a skill

and set of practices that can be taught, learned, and practiced.
• Software engineering teams are typically composed of coworkers

brought together by organizational considerations (rather than, say,
friendship).

• Also, group learning is reciprocal, and allows students to tackle
broader problems than they can alone.

• …ergo, mandatory group work in 17-313 .

…SO THIS PANDEMIC THING SUCKS, EH?

Some tips for remote group work.
• Set synchronous work time.
o …we’ve noticed you’re dividing and conquering a little

too much.
o Try working in a shared group meeting for an hour or so,

like you would if you were in person.
o Consider the vscode pair programming mode.

• Consider partnering up instead of fully dividing and
conquering.

That said: you’re all doing great.
Seriously.

Microsoft’s view of Software Engineering for ML

13

Server

Data Stream
(e.g. Kafka)

logsother
features
(e.g weather)

Data Lake

archival

Analytics
(OLAP)

Stream
Processing

Models

learning in nightly
batch processing

incremental
learning

• Latency and automation
vary widely

• Heavily distributedserving

14

How do we get from playing around with some
data on our machine to deployment?
• Goal today: get a little more concrete about activities

involved.
• Address specific concerns and activities that guide

design choices as you move to deployment.
o This is secretly an architecture case study that ultimately

motivates next week’s material, but there are ML-specific
concerns of note!

Demo part 1: Titanic

Quick activity to wake you up!
• Go to: https://www.kaggle.com/c/titanic
• Click on “Data”

o train.csv contains a training dataset.
o Data Description gives a bit more

info.
o Ignore gender_submission.csv and

test.csv
• Read over “Feature Engineering”,

linked from top

• Post to Slack:
o Your Andrew IDs, and answers to

the following:
§ An observation about the data that

you think is interesting.
§ If you were going to predict who

survived based on the data, which
feature(s) do you guess would be
most predictive?

§ Do you think any of the computed
features in Feature Engineering
would help? Why or why not?

https://www.kaggle.com/c/titanic

Demo part 1: Scikit-learn + Titanic

So what do we have?
…A model that can
predict whether someone
was likely to have
survived on the Titanic…

Gratuitous videogame flavortext!

As a Titanic enthusiast I want my avatar’s
likelihood of surviving the Titanic-in-space

disaster to be influence by historical
events…to…have…fun?

In actuality…
• …we’ll restrict attention to a simple deployment to start:

API
Gateway

Titanic
predictor

Client

Another
service

…

Goal: abstract the model!
• ML, in the form of trained models, is typically packaged up

into containers with specific associated API endpoints.
o Wide variety of ways to interact, including retraining, load

balancing, etc.
• Consider a simple predictor based on a static model that

simply produces prediction based on features provided in a
request.
o Frameworks exist for this! In HW4, we’ll use Flask, which supports

loading saved models and passing requests using json, HTTP POST
requests, or calls to a RESTFul API.

API
Gateway

Titanic
predictor

Quick Flask example that we’ll see again.

Going from a notebook to production?
• Notebook/research: iterative experiments of machine

learning workloads usually work off a small data set (e.g.,
spreadsheets, notebooks).

• Production environment has different characteristics:
o Data sources vary.
o Must prepare and denormalize the data to create features.
o Models must be updated periodically.
o Trained model needs to be served against real-time requests.
o Once deployed, must be monitored.

• We are going to ignore:
o The automation of the overall pipeline.
o Issues of scaling and incumbent quality attributes.

A roadmap for production readiness
• “ML reliability involves a host of issues not found in

small toy examples or even large offline experiments,
which lead to surprisingly large amounts of technical
debt.” – Breck et al.

• Today’s focus: processes/activities and API design
considerations for moving from experimentation to
deployment.

First, consider some sanity checks
• ”Machine learning systems differ from traditional software-

based systems in that the behavior of ML systems is not
specified directly in code but is learned from data.”

• This isn’t a data science class, but it’s still good to be able to
interrogate the black boxes you’re building.

• Sanity check 1: how does your model compare to (1) a
previous model, or (2) a naïve baseline?
o Quick Slack question: what’s a good naïve baseline, here?

• Sanity check 2: let’s see another cool tool.

Demo part 2: LIME

“The ML Test Score: A rubric for ML production
readiness and technical debt”
• Tests for Features and Data
• Tests for Model Development
o Most of the principles in the literature are tied directly to QA,

so we’ll return to this in later lectures.
• Tests for ML Infrastructure
• Monitoring for ML
o Check for stability, consistency between testing and serving,

dependency changes are flagged/considered, staleness,
slow-leak regressions in speed, latency, etc, or prediction
quality.

Tests for features and data (ML-specific!)
• Data 1: capture feature expectations in a schema. Sometimes

can be used for automatic checking, later (e.g., an adult
human is between 1-10 feet tall!)
o How? Calculate statistics from training data, adjust as appropriate

based on domain knowledge, write down expectations and
compare to data to avoid bias. Tools can help!

• Note that every feature has a cost! So, ensure:
o Data 2: all features are beneficial. Data exploration, statistics!

Correlations, leave-one-out comparisons
o Data 3: No feature costs too much. Consider inference and

computation latency, RAM usage, upstream data dependencies,
instability.

Tests for features and data (ML-specific!)
• Data 4: model should adhere to meta-level requirements, like

”cannot rely on forbidden features like age or race.”
o Sometimes it’s valuable to experiment with potential features in

development and experimentation!
o Enforce these requirements programmatically!

• Data 5: implement appropriate privacy controls.
o Do this by including enough time in your budget during new

feature development depending on sensitive data to allow for
proper handling, and test user-requested data deletion.

• Maintainability:
o Data 6: new features can be added quickly.
o Data 7: all input feature code is tested.

