
Architectural
documentation, views and

tradeoffs, patterns
Claire Le Goues
October 8, 2020

1

Administrativia

2

Learning Goals
• Practice using architecture diagrams to reason about quality

attributes.
• Use notation and views to describe the architecture suitable to the

purpose, and document architectures clearly and without ambiguity.
• Use diagrams to understand systems and reason about tradeoffs.
• Understand the utility of architectural patterns and tactics, and give

a couple of examples.

3

CASE STUDY: THE GOOGLE FILE SYSTEM

4

5

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Assumptions
• The system is built from many inexpensive commodity components

that often fail.
• The system stores a modest number of large files.
• The workloads primarily consist of two kinds of reads: large

streaming reads and small random reads.
• The workloads also have many large, sequential writes that append

data to files.
• The system must efficiently implement well-defined semantics for

multiple clients that concurrently append to the same file.
• High sustained bandwidth is more important than low latency.

6

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." ACM SIGOPS operating systems review. Vol.
37. No. 5. ACM, 2003.

7

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Qualities:
Scalability
Reliability
Performance
Cost

Questions
1. What are the most important quality attributes in the design?
2. How are those quality attributes realized in the design?

8

9

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Qualities:
Scalability
Reliability
Performance
Cost

Questions
1. What are the most important quality attributes in the design?
2. How are those quality attributes realized in the design?

10

Exercise
For the Google File System, create a physical architecture view that

addresses a relevant quality attribute

11

ARCHITECTURE STYLES/PATTERNS

12

Architectural style/pattern: broad principle of
system organization.
• Describes computational model

o E.g., pipe and filter, call-return, publish-subscribe, layered, services
• Related to one of common view types

o Static, dynamic, physical

13

Source: codeproject.org

Architectural style (pattern)

14

Source: codeproject.org

15

Bash Component Architecture

Example source:
http://www.aosabook.org

16

The RPython Translator, Translation steps

Compiler alternatives (Garlan and Shaw)

17

18

Client

Server

Database

Where to
validate user
input?

Example: Yelp App

Client-server style

19

Source: wikimedia commons

Two views of a client-server system

20Bass et al. Software Architecture in Practice.

Layered system

21

Source: eclipse.org

Tiered architecture

22

23

Examples of Architecture Descriptions

24

25

26

27

Moodle: Typical university systems architecture – Key subsystems

28

29

Architectural Style?

30

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

ARCHITECTURAL TACTICS

31

Tactics

• Architectural techniques to achieve qualities
o More tied to specific context and quality

• Smaller scope than architectural patterns
o Problem solved by patterns: “How do I structure my (sub)system?”
o Problem solved by tactics: “How do I get better at quality X?”

• Collection of common strategies and known solutions
o Resemble OO design patterns

32

Many tactics out there!

15-313 Software Engineering 33

Example Tactic Description: Record/playback
• Record/playback refers to both capturing information crossing an

interface and using it as input into the test harness. The information
crossing an interface during normal operation is saved in some
repository and represents output from one component and input to
another. Recording this information allows test input for one of the
components to be generated and test output for later comparison
to be saved.

34

Example Tactic Description:
Built-in monitors
• The component can maintain state, performance load, capacity,

security, or other information accessible through an interface.
This interface can be a permanent interface of the component or
it can be introduced temporarily via an instrumentation
technique such as aspect-oriented programming or preprocessor
macros. A common technique is to record events when
monitoring states have been activated. Monitoring states can
actually increase the testing effort since tests may have to be
repeated with the monitoring turned off. Increased visibility into
the activities of the component usually more than outweigh the
cost of the additional testing.

35

36

37

38

39

40

41

42

Second and more detailed third edition available as ebook
through CMU library.

Many tactics
described in Chapter
5

Brief high-level
descriptions (about 1
paragraph per tactic)

Why write a design doc?

43

Why write a design doc?
• Communicate among and with stakeholders in a system.

o Receive guidance on present decisions
o Resolve uncertainty
o Inform future engineers dealing with your system.

• Overall: make sure you are implementing the right thing, and also
not implementing the wrong thing.

• A key element of design documentation is feedback
o (which is probably why so many orgs use Google Docs…)

• Happy side effect: writing it out can help you clarify your own
design thinking, as you specify:
o What are you going to do?
o Why are you doing it that way?
o What assumptions/tradeoffs are you making?

44

Who is a design doc for?
• Effective communication starts by considering the audience.
• Several possible intended audiences; in this class, we focus on

documents intended for generally technical stakeholders:
o Other engineers on your team
o Other engineers on other teams
o Technical/project/product managers
o Yourself, in the future.

• The design doc should be accessible to an informed and competent
engineer in your organization.

45

Common pitfalls
• Too little detail, especially on rationale.
• Too MUCH detail, especially on the specifics of code.
• Impenetrable diagrams that Future Reader will not be able to

discern.
• Documentation that fails to evolve with the real system.

46

Common parts/templates
• Overview/feature description: what problem is being solved?

o High-level requirements, both functional and quality
• Background/key terms
• Goals/non goals
• Design alternatives, tradeoffs, assumptions
• Decision
• Other considerations/elements of design

47

48

Examples: SourceGraph RFCs

https://about.sourcegraph.com/handbook/communication/rfcs

Further Readings
• Bass, Clements, and Kazman. Software Architecture in Practice. Addison-

Wesley, 2003.
• Boehm and Turner. Balancing Agility and Discipline: A Guide for the

Perplexed, 2003.
• Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.

Documenting Software Architectures: Views and Beyond, 2010.
• Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.
• Jansen and Bosch. Software Architecture as a Set of Architectural Design

Decisions, WICSA 2005.
• Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide,

2009.
• Sommerville. Software Engineering. Edition 7/8, Chapters 11-13
• Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations,

Theory, and Practice. Wiley, 2009.

49

