Architectural
documentation, views and
tradeoffs, patterns

Claire Le Goues
October 8, 2020

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Administrativia

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Learning Goals

* Practice using architecture diagrams to reason about quality
attributes.

« Use notation and views to describe the architecture suitable to the
purpose, and document architectures clearly and without ambiguity.

« Use diagrams to understand systems and reason about tradeoffs.

 Understand the utility of architectural patterns and tactics, and give
a couple of examples.

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

CASE STUDY: THE GOOGLE FILE SYSTEM

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Application (file name, chunk index) GFS master o~ /foo/bar
GFS client | File namespace ,* chunk 2ef0
(chunk handle, ;
chunk locations) ; Legend:
mmm) Data messages
1 | Instructions to chunkserver | g Control messages
(chunk handle, byterange) 1 ¥ Chunkserver state Y
m GFS chunkserver GFS chunkserver .
chunk data Linux file system Linux file system

sa-~ Bo-

Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

Assumptions

* The system is built from many inexpensive commodity components
that often fail.

« The system stores a modest number of large files.

« The workloads primarily consist of two kinds of reads: large
streaming reads and small random reads.

» The workloads also have many large, sequential writes that append
data to files.

« The system must efficiently implement well-defined semantics for
multiple clients that concurrently append to the same file.

* High sustained bandwidth is more important than low latency.

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." ACM SIGOPS operating systems review. Vol.
37. No. 5. ACM, 2003.

Application

GFS client [

(file name, chunk index)

(chunk handle,
chunk locations)

(chunk handle, byte range)

GFS master

File namespace ,”

'
U
‘

- /foo/bar

chunk 2ef0

Y

Instructions to chunkserver

Chunkserver state

Y

chunk data

GFS chunkserver

GFS chunkserver

Linux file system

Linux file system

glg -

B8 -

Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Qualities:
Scalability
Reliability
Performance
Cost

Legend:

mmm) Data messages
— Control messages

Questions

1. What are the most important quality attributes in the design?
2. How are those quality attributes realized in the design?

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Applicati/{n

GFS c}(ent -

(file pame, chunk index)[
v -

(chunk handle,
chunk locations)

(chunk handle, byte range) __

GFS master
File namespace ,”

'
U
‘

- /foo/bar

~

chunk 2ef0

RN

))
tructions to chunkserver |

/‘/mmkserver state | |

t—

chunk data

GFS chunkserver

GFS chunkserver

Linux file system

Linnv file qQVy n

TITOOT T

SLSIn

B9 -

Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

Qualities:
Scalability
Reliability
Performance
Cost

Legend:

mmm) Data messages
— Control messages

Questions

1. What are the most important quality attributes in the design?
2. How are those quality attributes realized in the design?

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Exercise

For the Google File System, create a physical architecture view that
addresses a relevant quality attribute

Application (file name, chunk index) GFS master o~ /fOO/bar
GFS client | File namespace " chunk 2ef0
(chunk handle, /
chunk locations) ‘ Legend:
mmm) Data messages
1 | Instructions to chunkserver ! - Control messages
(chunk handle, byterange) | V Chumksecyer state i
GFS chunkserver GFS chunkserver |
chunk data Linux file system Linux file system

=9 - glo-

Figure 1: GFS Architecture

ARCHITECTURE STYLES/PATTERNS

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Architectural style/pattern: broad principle of
system organization.

e Describes computational model
o E.g. pipe and filter, call-return, publish-subscribe, layered, services

 Related to one of common view types
o Static, dynamic, physical

source lexical syntax semantic
code analyzer analyzer analyzer
\

code
generator

/
I—: Intermediate
language
code
' Interpreter
J
external . Source: codeproject.org
i ' Execution
libraries Results

Architectural style (pattern)

filel.cpp

file2.cpp

COMPILER

lexical
analyzer

syntax
analyzer

semantic
analyzer

code
generator

external
libraries

LINKER

code

filel.ohy || file2.oly

Intermediate | [Intermediate
language language

code

Execution

Results

Source: codeproject.org

14

Input :
Bash Component Architecture
Y
Lexical
Analysis Expansion Command
and » ® Execution
Parsing
Biace Tille o Variable and Word | Filename
Expansion Expansian Parameter Splitting Generation
Expansion,
Command,
Process.,
Arithmetic
Subsliluliun
Example source: 15
http://www.aosabook.org

Flow object space <«»| Python bytecode interpreter

v

Annotator
RTyper
v

Backend Optimizations

\ 4

Garbage collector and
exception transformation

v

C source generation

The RPython Translator, Translation steps

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

Compiler alternatives (Garlan and Shaw)

Text

Text

Lex

-

Syn }—»{ Sem

R

Opt

Figure 15: Traditional Compiler Model

Computations
(transducers and
transforms)

i

Data fetch/store

Figure 17: Modern Canonical Compiler

Lex

Code
= Code t+—a
~_ Mightbe
E -
SymTab
Ednt Syn

Figure 18: Canonical Compiler, Revisited

Example: Yelp App

i 9 °d W 4:02

X Write Review POST

S e e Example: There are a few times in life when a meal

is so expertly crafted and planned that it is nothing
short of genius. Last night, | had one of those
meals - the Mahi Mahi.

The dish was excellently prepared. Grilled, juicy,
and fresh without a hint of fishiness. A glaze of
tangerine sauce brought a hint of tart sweetness.
The fish was placed on a mound of sweet plantain
rice. The combination of the fish and rice alone
was to die for!

Database

Where to

validate user
. <o o |
input?

18

Client-server style

User’s workstation

Source: wikimedia commons

Remote machine

19

Two views of a client-server system

System

-

Client

Server

-

Key:

Module

_d

Decomposition View

)

Kay: O Component

_ ~— Request-Reply

_4

Client-Server View

Figure 1.2. Two views of a client-server system

Bass et al. Software Architecture in Practice.

20

Layered system

Eclipse 4.x SDK

Source: eclipse.org

21

Tiered architecture

https Xm
Client t%?--Webserver_‘ Webapp - sql_,

browser | o —J - (e.g. ruby program) | | <7777 Database
stream =
|
Client LAN
computer Internet Web server ||.EAN App server |7 7] DB server

Multiple Request and response bl
Process | | instances ||| | Physical host - » _Deployedon g connection
1

S ARONR R A

reference model.

- SR

Figure 1. The NIST/ECMA

Client Layer*

Access domain-management
Buffering and record-level 1/0
Transaction coordination

Agent Layer

Implementation of standard server interface
Logger, agent, and Instance tasks

Helix Directories

Path name to.FID mapping
Single-file (database) update by one task
Procedural Interface for queries

Oblect (FID directory)
. Identification and capability access (via FIDs)
FID to tree-root mappin? table of (FID,root,ref__count)

Existencé and deletion (reference counts)
Concurrency control (file interlocking)

Secure Tree

Basic crash-resistant file structure
Conditional commit
Provision of secure array of blocks

System

Commit and restart authority
Disk space allocation
Commit domains

Cache

Caching and performance optimization
Commit support (flush)

Frame allocation (to domains)

Optional disk shadowing

Canonical Disk

| Physical disk access]

“Also called client Helix.
Figure 2. Abstraction layering.

IEEE Software, "Helix: The architecture of the XMS Distributed File System,
Marek Fridrich and William Older, May 1985, Vol. 2, No. 3, P. 23

-

4T_——_7

Window System

Back ,
s Display

Kernel
adap- adap- Systemn

er ter
OS adapter

Application
Program

Operating System

l\w

Figure 2. Display PostScript interpreter components.

An Overviev of the DISPLAY POSTSCRIPT™™ Syatem, Adobe Systems Incorporated, March 16, 1988, P, 10

25

wser

transaction | '

dalabdase architecture srchitecture $ trace :
schema program tebdles manager ,
L AR AL AL AL AL SRR L) SRR 'Q0.00Q...Q.O..O..l.......l....“..l.'.id- ;
i ‘ :
DDL type expander

compiler trensformers Ryers 1 5
and utilities 00d stitivies :
.....I.l........ll.lll.j

Gt it -Sas:

‘.....I.......“..........0.......“"...0.'.0.......'.......“..I....l.l.'.‘..l..."l.......l.....l.J

legend

module or A—3B Acella B
pregram

schema or

tables Awm=dB dats path

Figure 3.1 The Configuration of the GENESIS Prototype

Cenesis: A Reconfiguration Database Management System, D). S. Batory, J.R. Barnett, J.F. Carza, K.P. Saich,
K. Toukuda, B.C. Twichell, T.E. Wise, Department of Computer Sclences, University of Texas at Austis,

Document
repository

(e.g. Alfresco)

Content

Authentication
Provider
(e.g. LDAP)
lUser identities
Enrollments
-
Moodle Grades >

Reporting /

SOFTWARE
RESEARCH

M|

institute for |

Moodle: Typical university systems architecture — Key subsystems

(Carnegie Mellon University

analytics tool

Compilations

\\zed assets

Student
information
system

for assessment

ePortfolio

(e.g. Mahara)

School of Computer Science

PASSENGER
O MANAGEMENT

[BILLING] [NOTIFICATION] [PAYMENTS]

TRIP DRIVER
MANAGEMENT | | MANAGEMENT O\

M|

institute for |~ Carnegie Mellon University
SOFTWARE .
ResearcH | ochool of Computer Science

2

PASSENGER
MANAGEMENT

Z I
REST
API DRIVER
MANAGEMENT

REST
API TRIP

MANAGEMENT

L

STRIPE
ADAPTER

BILLING

ey

TWILIO
ADAPTER

NOTIFICATION

SENDGRID
ADAPTER

M|

institute for
SOFTWARE
RESEARCH

webhook
I
external system
HTTP
h 4
AP| Gateway
H'IITP system
T—— servicel |-. s service 7
message
broker
service 2 A =i service 6
1" ¢ \
service 3 : service 4 service 5

(Carnegie Mellon University
School of Computer Science

Architectural Style?

Application

(file name, chunk index) GFS master - /foo/bar

chunk 2ef0

GFS client [

File namespace ,”
(chunk handle, ’
chunk locations) ‘

(chunk handle, byte range)

chunk data

Instructions to chunkserver

' Chunkserver state

Y

Legend:

mmm) Data messages
— Control messages

GFS chunkserver

GFS chunkserver

Linux file system

Linux file system

glg -

B8 -

Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

30

ARCHITECTURAL TACTICS

0
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Tactics

 Architectural techniques to achieve qualities
o More tied to specific context and quality

« Smaller scope than architectural patterns
o Problem solved by patterns: “How do | structure my (sub)system?”
o Problem solved by tactics: “How do | get better at quality X?"

 Collection of common strategies and known solutions
o Resemble OO design patterns

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Example Tactic Description: Record/playback

1Sf

Record/playback refers to both capturing information crossing an
interface and using it as input into the test harness. The information
crossing an interface during normal operation is saved in some
repository and represents output from one component and input to
another. Recording this information allows test input for one of the
components to be generated and test output for later comparison

to be saved.

institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Example Tactic Description:
Built-in monitors

« The component can maintain state, performance load, capacity,
security, or other information accessible through an interface.
This interface can be a permanent interface of the component or
it can be introduced temporarily via an instrumentation
technique such as aspect-oriented programming or preprocessor
macros. A common technique is to record events when
monitoring states have been activated. Monitoring states can
actually increase the testing effort since tests may have to be
repeated with the monitoring turned off. Increased visibility into
the activities of the component usually more than outweigh the
cost of the additional testing.

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Availability
Fault Detection Recovery- Recovery- Prevention
Preparation Reintroduction
and Repair
> E—
Fault 1 Fault
Mask
+ v oras ed
Ping/EchO Votmg Shadow Removal from Repalr
Heartbeat Active State Service Made
Exception Redundancy Resynchronization Transactions
Passive Rollback Process Monitor
Redundancy
Spare

R

|Sf institute for | Carnegie Mellon University

SOFTWARE
RESEARCH

School of Computer Science

Changes
Arrive

>

Localize
Changes

1

Semantic
Coherence

Anticipate
Expected
Changes

Generalize
Module

Limit Possible
Options

Abstract
Common
Services

Modifiability

Prevention
of Ripple Effect

Hide Information

Maintain Existing
Interface

Restrict
Communication
Paths

Use an Intermediary

Defer
Binding Time

|

Runtime
Registration

Configuration
Files

Polymorphism

Component
Replacement

Adherence to
Defined
Protocols

Changes
Made,
Tested,
and
Deployed
Within
Time and
Budget

3/

>

—
Events
Arrive

\

2
Performance
Resource Resource Resource
Demand Management Arbitration
Increase Introduce Scheduling
Computation Concurrency Policy
Efficiency Maintain
Reduce Multiple
utational Copies
Overhead Increase
Manage Event Available
Rate Resources
equency
of Sampling

Response
Generated
Within
Time
Constraints

38

Attack

e
Security
Resisting Dectecting Recovering
Attacks Attacks from an Attaok
Authenticate Users Intrusior_l Restoration Identification
Authorize Users Detection l 1
Maintain Data
Confidentiality
e : See Audit
st M 11 Availability Trail
Limit Exposure
Limit Access
o

System
Detects,
Resists, or
Recovers
from
Attacks

39

Completion
of an
Increment

institute for
| S r SOFTWARE

-

Testability

Manage Internal
Input/Output Monitoring
Record/Playback Built-ip
Separate Interface Monitors
from Implementation
Specialized Access
\ Routines/Interfaces

(Carnegie Mellon University

>
ults
etected

RESEARCH

School of Computer Science

(
Usability
Separate Support Support
User User System
» | Interface Initiative Initiative
User
Request l l
Cancel User Model
Undo System Model
Aggregate Task Model
"

institute for
SOFTWARE
RESEARCH

1Sf

J

(Carnegie Mellon University

School of Computer Science

User

Given
Appropriate
Feedback
and
Assistance

L

} Software Many tactics

| Architecture (escribed in Chapter
g in Practice
; Second Edition

5

Brief high-level
— descriptions (about 1
Len Bass paragraph per tactic)

Paul Clements
Rick Kazman

Second and more detailed third edition available as ebook

SOFTWARE .
ResearcH | ochool of Computer Science

S r institute for | ~ Carnegie Mellon University

Why write a design doc?

Claire Le Goues v
\ @clegoues
Hey there, practicing engineers in my timeline: imagine
you were teaching the software engineers of tomorrow

Adrienne P& rterFelt @ @ apf - Oct3 v
Replying to @clegoues

Don't trust anything you read because it's probably outdated ... think of it
as a helpful hint and not an authoritative source of Truth

Q mw 2 O 3 Y

L - Titus Barik @barik - Oct 3 v
Replying to @clegoues and @adolfont
Good design documents are also good design rationales. They tell you

why certain choices were made, even if you don't agree with them.

Q (! Q 2 O

SOFTWARE
RESEARCH

| r institute for | Carnegie Mellon University
S School of Computer Science

Why write a design doc?

« Communicate among and with stakeholders in a system.
o Receive guidance on present decisions
o Resolve uncertainty
o Inform future engineers dealing with your system.

 Overall: make sure you are implementing the right thing, and also
not implementing the wrong thing.

« A key element of design documentation is feedback
o (which is probably why so many orgs use Google Docs...)

« Happy side effect: writing it out can help you clarify your own
design thinking, as you specify:
o What are you going to do?
o Why are you doing it that way?
o What assumptions/tradeoffs are you making?

| S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Who is a design doc for?

« Effective communication starts by considering the audience.

 Several possible intended audiences; in this class, we focus on
documents intended for generally technical stakeholders:
o Other engineers on your team
o Other engineers on other teams
o Technical/project/product managers
o Yourself, in the future.

« The design doc should be accessible to an informed and competent
engineer in your organization.

| S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Common pitfalls

Too little detall, especially on rationale.

Too MUCH detall, especially on the specifics of code.

Impenetrable diagrams that Future Reader will not be able to
discern.

Documentation that fails to evolve with the real system.

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Common parts/templates

« Overview/feature description: what problem is being solved?
o High-level requirements, both functional and quality

« Background/key terms

» Goals/non goals

 Design alternatives, tradeoffs, assumptions
 Decision

 Other considerations/elements of design

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Examples: SourceGraph RFCs

https://about.sourcegraph.com/handbook/communication/rfcs

48

Further Readings

* Bass, Clements, and Kazman. Software Architecture in Practice. Addison-
Wesley, 2003.

« Boehm and Turner. Balancing Agility and Discipline: A Guide for the
Perplexed, 2003.

 Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.
Documenting Software Architectures: Views and Beyond, 2010.

 Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.

 Jansen and Bosch. Software Architecture as a Set of Architectural Design
Decisions, WICSA 2005.

» Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide,
20009.

« Sommerville. Software Engineering. Edition 7/8, Chapters 11-13

 Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009.

institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

