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Learning Goals

* Practice using architecture diagrams to reason about quality
attributes.

« Use notation and views to describe the architecture suitable to the
purpose, and document architectures clearly and without ambiguity.

« Use diagrams to understand systems and reason about tradeoffs.

 Understand the utility of architectural patterns and tactics, and give
a couple of examples.
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CASE STUDY: THE GOOGLE FILE SYSTEM
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Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.
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Assumptions

* The system is built from many inexpensive commodity components
that often fail.

« The system stores a modest number of large files.

« The workloads primarily consist of two kinds of reads: large
streaming reads and small random reads.

» The workloads also have many large, sequential writes that append
data to files.

« The system must efficiently implement well-defined semantics for
multiple clients that concurrently append to the same file.

* High sustained bandwidth is more important than low latency.

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." ACM SIGOPS operating systems review. Vol.
37. No. 5. ACM, 2003.
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Questions

1. What are the most important quality attributes in the design?
2. How are those quality attributes realized in the design?
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Questions

1. What are the most important quality attributes in the design?
2. How are those quality attributes realized in the design?
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Exercise

For the Google File System, create a physical architecture view that
addresses a relevant quality attribute
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ARCHITECTURE STYLES/PATTERNS
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Architectural style/pattern: broad principle of
system organization.

e Describes computational model
o E.g. pipe and filter, call-return, publish-subscribe, layered, services

 Related to one of common view types
o Static, dynamic, physical

source lexical syntax semantic
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Compiler alternatives (Garlan and Shaw)
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Figure 15: Traditional Compiler Model
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Figure 18: Canonical Compiler, Revisited




Example: Yelp App

i 9 °d W 4:02

X Write Review POST

S e e Example: There are a few times in life when a meal

is so expertly crafted and planned that it is nothing
short of genius. Last night, | had one of those
meals - the Mahi Mahi.

The dish was excellently prepared. Grilled, juicy,
and fresh without a hint of fishiness. A glaze of
tangerine sauce brought a hint of tart sweetness.
The fish was placed on a mound of sweet plantain
rice. The combination of the fish and rice alone
was to die for!

Database

Where to

validate user
. <o o |
input?
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Client-server style

User’s workstation

Source: wikimedia commons

Remote machine
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Two views of a client-server system

System

-

Client

Server

-

Key:

Module

_d

Decomposition View

)

Kay: O Component

\_ ~— Request-Reply

_4

Client-Server View

Figure 1.2. Two views of a client-server system

Bass et al. Software Architecture in Practice.
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Layered system

Eclipse 4.x SDK

Source: eclipse.org
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Tiered architecture
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Client Layer*

Access domain-management
Buffering and record-level 1/0
Transaction coordination
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Helix Directories
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Procedural Interface for queries

Oblect (FID directory)
. Identification and capability access (via FIDs)
FID to tree-root mappin? table of (FID,root,ref__count)

Existencé and deletion (reference counts)
Concurrency control (file interlocking)

Secure Tree

Basic crash-resistant file structure
Conditional commit
Provision of secure array of blocks

System

Commit and restart authority
Disk space allocation
Commit domains

Cache

Caching and performance optimization
Commit support (flush)

Frame allocation (to domains)

Optional disk shadowing

Canonical Disk

| Physical disk access ]

“Also called client Helix.
Figure 2. Abstraction layering.

IEEE Software, "Helix: The architecture of the XMS Distributed File System,
Marek Fridrich and William Older, May 1985, Vol. 2, No. 3, P. 23
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Figure 2. Display PostScript interpreter components.

An Overviev of the DISPLAY POSTSCRIPT™™ Syatem, Adobe Systems Incorporated, March 16, 1988, P, 10
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K. Toukuda, B.C. Twichell, T.E. Wise, Department of Computer Sclences, University of Texas at Austis,
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Architectural Style?
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Tactics

 Architectural techniques to achieve qualities
o More tied to specific context and quality

« Smaller scope than architectural patterns
o Problem solved by patterns: “How do | structure my (sub)system?”
o Problem solved by tactics: “How do | get better at quality X?"

 Collection of common strategies and known solutions
o Resemble OO design patterns
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Example Tactic Description: Record/playback

1Sf

Record/playback refers to both capturing information crossing an
interface and using it as input into the test harness. The information
crossing an interface during normal operation is saved in some
repository and represents output from one component and input to
another. Recording this information allows test input for one of the
components to be generated and test output for later comparison

to be saved.
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Example Tactic Description:
Built-in monitors

« The component can maintain state, performance load, capacity,
security, or other information accessible through an interface.
This interface can be a permanent interface of the component or
it can be introduced temporarily via an instrumentation
technique such as aspect-oriented programming or preprocessor
macros. A common technique is to record events when
monitoring states have been activated. Monitoring states can
actually increase the testing effort since tests may have to be
repeated with the monitoring turned off. Increased visibility into
the activities of the component usually more than outweigh the
cost of the additional testing.
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Attack
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Usability
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L

} Software Many tactics

| Architecture  (escribed in Chapter
g in Practice
; Second Edition

5

Brief high-level
— descriptions (about 1
Len Bass paragraph per tactic)

Paul Clements
Rick Kazman

Second and more detailed third edition available as ebook
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Why write a design doc?

Claire Le Goues v
\ @clegoues
Hey there, practicing engineers in my timeline: imagine
you were teaching the software engineers of tomorrow

Adrienne P& rterFelt @ @ apf - Oct3 v
Replying to @clegoues

Don't trust anything you read because it's probably outdated ... think of it
as a helpful hint and not an authoritative source of Truth

Q mw 2 O 3 Y

L - Titus Barik @barik - Oct 3 v
Replying to @clegoues and @adolfont
Good design documents are also good design rationales. They tell you

why certain choices were made, even if you don't agree with them.

Q (! Q 2 O
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Why write a design doc?

« Communicate among and with stakeholders in a system.
o Receive guidance on present decisions
o Resolve uncertainty
o Inform future engineers dealing with your system.

 Overall: make sure you are implementing the right thing, and also
not implementing the wrong thing.

« A key element of design documentation is feedback
o (which is probably why so many orgs use Google Docs...)

« Happy side effect: writing it out can help you clarify your own
design thinking, as you specify:
o What are you going to do?
o Why are you doing it that way?
o What assumptions/tradeoffs are you making?
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Who is a design doc for?

« Effective communication starts by considering the audience.

 Several possible intended audiences; in this class, we focus on
documents intended for generally technical stakeholders:
o Other engineers on your team
o Other engineers on other teams
o Technical/project/product managers
o Yourself, in the future.

« The design doc should be accessible to an informed and competent
engineer in your organization.
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Common pitfalls

Too little detall, especially on rationale.

Too MUCH detall, especially on the specifics of code.

Impenetrable diagrams that Future Reader will not be able to
discern.

Documentation that fails to evolve with the real system.
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Common parts/templates

« Overview/feature description: what problem is being solved?
o High-level requirements, both functional and quality

« Background/key terms

» Goals/non goals

 Design alternatives, tradeoffs, assumptions
 Decision

 Other considerations/elements of design
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Examples: SourceGraph RFCs

https://about.sourcegraph.com/handbook/communication/rfcs
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Further Readings

* Bass, Clements, and Kazman. Software Architecture in Practice. Addison-
Wesley, 2003.

« Boehm and Turner. Balancing Agility and Discipline: A Guide for the
Perplexed, 2003.

 Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.
Documenting Software Architectures: Views and Beyond, 2010.

 Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.

 Jansen and Bosch. Software Architecture as a Set of Architectural Design
Decisions, WICSA 2005.

» Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide,
20009.

« Sommerville. Software Engineering. Edition 7/8, Chapters 11-13

 Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009.
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