
Architecture
Styles and Hypes

Michael Hilton Claire Le Goues

Christopher Meiklejohn

October 15, 2020

1

Administrativia

• Homework 4 will be released today.

• No recitation Friday.

• Wednesday recitation – bring questions or we end early!

o Work through problems on the previous midterms – many students found

this helpful.

o Any questions on the previous midterm questions – bring them to recitation

to discuss as a class.

• Midterm on October 22nd.

2

Learning Goals

• Understand history of Microservices

• Reason about tradeoffs of Microservices architectures.

3

MICROSERVICES

17-313 Software Engineering

4

17-313 Software Engineering

5

17-313 Software Engineering

6

17-313 Software Engineering

7

8

Netflix

17-313 Software Engineering

9

(as of 2016)

Bookmarks

Recommendations

My List

Metrics

AppBoot

17-313 Software Engineering

10

(as of 2016)

Microservices

17-313 Software Engineering

11

17-313 Software Engineering

12

source: http://martinfowler.com/articles/microservices.html

13

Uber

17-313 Software Engineering

14

(as of 2016)

17-313 Software Engineering

15

(as of 2016)

17-313 Software Engineering

16

(as of 2016)

17-313 Software Engineering

17

(as of 2016)

Microservices

• Building applications as suite of small and easy to replace services

o fine grained, one functionality per service

(sometimes 3-5 classes)

o composable

o easy to develop, test, and understand

o fast (re)start, fault isolation

o modelled around business domain

• Interplay of different systems and languages

• Easily deployable and replicable

• Embrace automation, embrace faults

• Highly observable

17-313 Software Engineering

18

Service Oriented Architectures
(SOA)

• Service: self-contained functionality

• Remote invocation, language-

independent interface

• Dynamic lookup possible

• Often used to wrap

legacy systems

17-313 Software Engineering

19

Service
Registry

Service
Requestor

Service
Providerbind

call

publishfind

Service Oriented Architectures
(SOA) Microservice Architecture

• Service: self-contained functionality

• Language-independent interface

• Dynamic lookup

17-313 Software Engineering

20

Kubernetes

Service A
(Container)

Service B
(Containers)

HTTP/GRPC

Runs and
Assigns IP

DNS
Lookup

Technical Considerations

• HTTP/REST/JSON/GRPC/etc. communication

• Independent development and deployment

• Self-contained services (e.g., each with own database)

o multiple instances behind load-balancer

• Streamline deployment

17-313 Software Engineering

21

17-313 Software Engineering

22

source: http://martinfowler.com/articles/microservices.html

23

Hipster Shop

Hipster Shop User Interface

17-313 Software Engineering

24

Hipster Shop Bingo Game

17-313 Software Engineering

25

https://docs.google.com/presentation/d/1P7X7nFMIWAQW12kOk6pW66jtk34S_j_RnCt2c3BwMvM/edit?usp=sharing

Make a copy of the
first slide for your
group.

Add your Andrew IDs
to the slide.

Frontend

FREE SPOT

Hipster Shop Microservice Architecture

17-313 Software Engineering

26

https://github.com/GoogleCloudPlatform/microservices-demo

Microservices overhead

17-313 Software Engineering

27

28

Cinema

Cinema Diagram

17-313 Software Engineering

29

https://codeahoy.com/2016/07/10/writing-microservices-in-python-using-flask/

https://github.com/umermansoor/microservices/

30

Cinema Code Walkthrough

Drawbacks

• Complexities of distributed systems

o network latency, faults, inconsistencies

o testing challenges

• Resource overhead, RPCs

• Shifting complexities to the network

• Operational complexity

• Frequently adopted by breaking down monolithic application

• HTTP/REST/JSON communication

o Schemas?

17-313 Software Engineering

31

Discussion of Microservices

• Are they really “new”?

• Do microservices solve problems, or push them down the line?

• What are the impacts of the added flexibility?

• Beware “cargo cult”

• “If you can’t build a well-structured monolith, what makes you think

microservices is the answer?” – Simon Brown

• Leads to more API design decisions

17-313 Software Engineering

32

33

Serverless

17-313 Software Engineering

34

SERVERLESS

SERVERLESS

17-313 Software Engineering

35

SERVERLESS

17-313 Software Engineering

36

SERVERLESS

Serverless (Functions-as-a-Service)

• “extreme” use of microservices

• Instead of writing minimal services, write just functions

• No state, rely completely on cloud storage or other cloud services

• Pay-per-invocation billing with elastic scalability

• Drawback: more ways things can fail, state is expensive

• Examples:

AWS lambda, CloudFlare workers, Azure Functions

• What might this be good for?

• (New in 2019/20) Stateful Functions:

Azure Durable Entities, CloudFlare Durable Objects

17-313 Software Engineering

37

17-313 Software Engineering

38

