
DevOps
Michael Hilton Claire Le Goues

Christopher Meiklejohn

October 20, 2020

1

Administrativia: Midterm Exam
• Midterm Thursday, October 22nd released at 00:00 US/Eastern

o Please sleep!
o Released at this time due to not all students being in US/Eastern.

(released Noon in Singapore)
o Available on Gradescope
o Upload to Gradescope by Thursday, October 22nd at 23:59 US/Eastern

• Download PDF from Gradescope, submit in one of two ways:
o Upload document, print, scan, photo with answers;

▪ (e.g., annotate PDF, print/scan/photo upload, upload Word/PDF doc of just answers)

o Answer on Gradescope directly through the UI.

• Questions on Midterm Exam
o Instructors will be available on Zoom during lecture slot to answer questions.

o Available on Slack throughout the day, DM all three instructors in order to
ensure prompt answers from who is available.

Hours: 8:00 AM US/Eastern – 10:00 PM US/Eastern

2

Homework 2: Grade Distribution

• Released Homework 2 (A, C, D)

o A: median: 90%, mean: 91%

o C: median: 95%, mean: 87%

o D: median: 100%, mean: 92%

• Homework B is halfway graded, will be done shortly.

• Midsemester grades will be released Monday

o Will include both midterm and Homework 2B.

3

Homework 2: Observations
• Overall, high quality submissions for Homework 2.

• Feedback on schedules:

o Should contain:

▪ Description

▪ Who it was assigned to

▪ Estimated size from before work begins

▪ Actual time took when work completed

▪ Who actually completed the work (it’s OK to reassign, just track this!)

o Difficult to capture this in prose, use spreadsheet, Trello, GitHub projects, etc.

• Reflections

o Discussing why things happened is better than listing what happened

(this is in the schedule!)

4

Learning Goals

• Identify the benefits to adopting a DevOps mentality within your

organization

• Understand the stages in a typical DevOps pipeline

• Identify the benefits of each stage of the pipeline and how they

relate to improving both velocity and code quality

5

6

7

Netflix

8

Netflix: Microservice Architecture

as of 2018, reference: https://www.youtube.com/watch?v=UTKIT6STSVM

Activity
What were some of the challenges of

running a microservice architecture of this scale?

• 100s of microservices
• 1,000s of production changes per day
• 10,000s of virtual machines
• 100,000s of customer interactions per second
• 1,000,000s of metrics per minute (actually, 2 million)

• 81.5 million customers

• 10s of operations engineers
• no single engineer knows the entire application

9

Brainstorm: Microservices

10

What is DevOps?

Bringing together two traditionally separate groups within software organizations
- Development, typically measured on features completed, code shipped
- Operations, typically measured through stability, reliability, availability

Benefits:
- Increased Velocity: how quickly products and applications are pushed to release
- Increased Quality: successful delivery of features and products

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

11

Amazon

Learning Goals

12

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

Learning Goals

13

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

PYTHON DEV MAKE DOCKER-BUILD
COMPOSE UP

MANUALLY TEST

Learning Goals

14

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

How do we get to DevOps?

17-313 Software Engineering

15

Goals:

1. Technological: Automated process for moving code from dev to release.

Starting with check-in, build, unit test, build artifact,
integration test, load test, as moves through stage to production,
finally, with monitoring and other telemetry.

2. Cultural: Building cohesive, multidisciplinary teams.

Typically, developers are the “first responders” when things go bad in production.
Sense of “ownership” by the developer all the way from inception to release.

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

What can it look like when it’s done?

17-313 Software Engineering

16

reference: https://www.youtube.com/watch?v=UTKIT6STSVM

Netflix Spinnaker (open-source CI/CD fully automated pipeline):
• Takes code from code repository to production.
• Allows developers to specify required tests.
• Determines where, how code should be run in system (e.g., replication, placement.)
• Supports canary deployments, traffic management.
• Just publish the repo!

reference: Puppet State of the DevOps Report 2017

5x
lower
change
failure rate

440x
faster from
commit to deploy

46x
more frequent
deployments

44%
more time spent
on new features
and code

Exercise: DevOps Pipeline

17-313 Software Engineering

17

ChoicesDevelop

Test

Deploy

Monitor

Build

Automate

Choices

Check in

Peer review Run integration tests Run penetration testsRun unit tests Deploy to prod Record errors

Require Manual
approval to advance

Style check
Build container

images
Compilation Run load tests

A Typical DevOps Pipeline

17-313 Software Engineering

18

Develop Build Test Deploy Monitor

Check in

Peer review

Run integration
tests

Run penetration
testsRun unit tests

Deploy to prod Record errors

Require Manual
approval to

advance

Style check

Build container
images

Compilation Run load tests

What do we need to practice for DevOps? 1

17-313 Software Engineering

19

Continuous Integration (CI)
1. Constant testing as code is checked-in/pushed to the repository (e.g., GH hooks, etc.)
2. Verify the build process works (i.e., parsing, compilation, code generation, etc.)
3. Verify unit tests pass, style checks pass, other static analysis tools.
4. Build artifacts

Continuous Delivery & Deployment (CD)
1. Moving build artifacts from test -> stage -> prod environments.

Environments always differ! (e.g., ENV, PII, data, etc.)
2. Gate code, if necessary, from advancing without manual approval.

Useful when initially transitioning applications into a modern DevOps pipeline.

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

What do we need to practice for DevOps? 2

17-313 Software Engineering

20

Infrastructure as Code
1. Required resources (e.g., cloud services, access policies, etc.) are created by code.

No UI provisioning, no manual steps (avoid: easy to forget, time consuming!)
2. “Immutable Infrastructure”

No update-in-place (e.g., SSH to server.)
Replace with new instances, decommission old instances.

3. Nothing to prod without it being in code, checked-in, versioned along side code!

Observability (Monitoring, Logging, Tracing, Metrics)
1. Be able to know how your application is running in production
2. Track and analyze low-level metrics on performance, resource allocation
3. Capture high-level metrics on application behavior

1. What’s “normal”?
2. What’s abnormal?

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

CI/CD

17-313 Software Engineering

21

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

Continuous Integration (CI)
1. Commit and check-in code frequently (always can squash later)
2. Commits build on previous commits (know precisely where the build breaks)
3. Automated feedback and testing on commits
4. Artifact creation (e.g., container images, WAR files, etc.)
5. Ensure code, supporting infrastructure, documentation are all versioned together

Continuous Deployment (CD)
1. Artifacts automatically shipped into test, stage, production environments
2. Prevents “manual” deployment, avoids “manual” steps, early detection of problems
3. Can be tied to a “manual” promotion technique to advance through environments
4. Multi-stage deployment with automatic rollback on failure detection

22

Deploying Code

Nightly Build

• Build code and run smoke test (Microsoft 1995)

• Benefits

o it minimizes integration risk

o It reduces the risk of low quality

o it supports easier defect diagnosis

o it improves morale

Ring Deployment: Microsoft

• Commits flow out to rings, de-flight if issue

• For example:

o Ring 0 => Team

o Ring 1 => Dogfood

o Ring 2 => Beta

o Ring 3 => Many

o Ring 4 => All

• Windows 10 Insiders Program

o Dev Channel (weekly builds of Windows 10)

o Beta Channel (dev + validated updates by Microsoft)

o Release Preview Channel (highest quality, validated updates)

24

Rapid Release/Mozilla

If deployment requires on-prem deployment, say a web browser

• There are four channels: Nightly, Alpha, Beta, Release Candidate

• Code flows every 2 weeks to next channel, unless fast tracked by

release engineer.

• Involve corporate customer specific testing in testing (Practice also

used by IBM, Redhat)

• same for Windows Edge browser Insiders Program:

o Canary: nightly builds

o Dev: weekly builds

o Beta: 6 weeks

25

“Big bang” deployments

26

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

Fast to Deploy, Slow to Release

• Chuck Rossi at Facebook: “Get your s*** in, fix it in production”

27

Dark Launches at Instagram

• Early: Integrate as soon as possible. Find bugs early. Code can run

in production about 6 months before being publicly announced.

• Often: Reduce friction. Try things out. See what works. Push small

changes just to gather metrics, feasibility testing. Large changes just

slow down the team. Do dark launches, to see what performance is

in production, can scale up and down. "Shadow infrastructure" is too

expensive, just do in production.

• Incremental: Deploy in increments. Contain risk. Pinpoint issues.

28

Facebook process (until 2016)

• Release is cut Sunday 6pm

• Stabilize until Tuesday, canaries, release. Tuesday push is 12,000 diffs.

• Cherry pick: Push 3 times a day (Wed-Fri) 300-700 cherry picks / day.

29

Facebook quasi-continuous release

30

Rolling deployments

31

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

Red/Black (Blue/Green) deployments

32

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

Canary deployments

33

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

Feature flags

34

35

Monitoring Production

What is Observability?

17-313 Software Engineering

36

“As a philosophy, observability is our ability as developers to know and
discover what is going on in our systems. In practice, it means adding

telemetry to our systems in order to measure change and track
workflows.”

The New Stack, “What is observability?” 28 Feb 2020
https://thenewstack.io/what-is-observability/

Observability: Dashboards

17-313 Software Engineering

37

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

1. What’s happening now?

2. What does “normal” behavior look like?

3. What does it look like when something’s gone (or is going) wrong?

4. Can I correlate events to changes in the actual graphs?

Observability: Dashboard Example

17-313 Software Engineering

38

reference: https://datadog-prod.imgix.net/img/blog/monitoring-kubernetes-with-datadog/kubernetes-dashboard.png?fit=max

Observability: Defining “Normal”

17-313 Software Engineering

39

reference: https://www.youtube.com/watch?v=vq4QZ4_YDok

Observability: When things aren’t “Normal”

17-313 Software Engineering

40

reference: https://www.youtube.com/watch?v=qyzymLlj9ag

Automatic
rollback on high

variance!

This is starting to sound awfully like a
quality attribute….

Observability: Distributed Tracing

17-313 Software Engineering

41

Homework 2A: Testing Plan

17-313 Software Engineering

42

Develop Build Test Deploy Monitor

In your homework teams, come up with
one concrete task for the build, test, and monitor stages

to verify that your feature works as designed once deployed to production.

DevOps: More Resources

17-313 Software Engineering

43

All available online from CMU Libraries!

Next Week: QA

17-313 Software Engineering

44

Questions?

