DevOps

Michael Hilton Claire Le Goues
Christopher Meiklejohn
October 20, 2020

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

Administrativia: Midterm Exam

« Midterm Thursday, October 22" released at 00:00 US/Eastern
o Please sleep!

o Released at this time due to not all students being in US/Eastern.
(released Noon in Singapore)

o Available on Gradescope
o Upload to Gradescope by Thursday, October 224 at 23:59 US/Eastern

* Download PDF from Gradescope, submit in one of two ways:
o Upload document, print, scan, photo with answers;

* (e.g., annotate PDF, print/scan/photo upload, upload Word/PDF doc of just answers)
o Answer on Gradescope directly through the Ul.

* Questions on Midterm Exam
o Instructors will be available on Zoom during lecture slot to answer questions.

o Available on Slack throughout the day, DM all three instructors in order to
ensure prompt answers from who is available.

Hours: 8:00 AM US/Eastern — 10:00 PM US/Eastern

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

Homework 2: Grade Distribution

« Released Homework 2 (A, C, D)
o A: median: 90%, mean: 91%
o C: median: 95%, mean: 87%
o D: median: 100%, mean: 92%

 Homework B is halfway graded, will be done shortly.

* Midsemester grades will be released Monday
o Will include both midterm and Homework 2B.

I S r nstitute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Homework 2: Observations

 Overall, high quality submissions for Homework 2.

 Feedback on schedules:

o Should contain:
= Description
= Who it was assigned to
= Estimated size from before work begins
= Actual time took when work completed
» Who actually completed the work (it's OK to reassign, just track this!)

o Difficult to capture this in prose, use spreadsheet, Trello, GitHub projects, etc.

* Reflections

o Discussing why things happened is better than listing what happened
(this is in the schedule!)

RESEARCH

institute for | Carnegie Mellon University
I S r SOFTWARE

School of Computer Science

Learning Goals

* |dentify the benefits to adopting a DevOps mentality within your
organization

» Understand the stages in a typical DevOps pipeline

* |dentify the benefits of each stage of the pipeline and how they
relate to improving both velocity and code quality

.] / . .
I S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

" institute for | Carnegie Mellon University
I S r SOFTWARE .
ResearcH | ochool of Computer Science

Netflix

Netflix: Microservice Architecture

* 100s of microservices

* 1,000s of production changes per day

e 10,000s of virtual machines

e 100,000s of customer interactions per second

e 1,000,000s of metrics per minute (actually, 2 million)

e 81.5 million customers

e 10s of operations engineers
* no single engineer knows the entire application

Activity
What were some of the challenges of
running a microservice architecture of this scale?

as of 2018, reference: https://www.youtube.com/watch?v=UTKIT6STSVM

institute for | Carnegie Mellon University
SOFTWARE .
School of Computer Science

RESEARCH

Brainstorm: Microservices

SOFTWARE .
ResearcH | ochool of Computer Science

S r nstitute for | Carnegie Mellon University

= chris meiklejohn @cmeik - 6h v
. My dear industry friends and followers: what are your favorite resources on

° 7 DevOps?
a I S ev p s H (think: good content, resources, for upper-year undergraduates on the art,

techniques, goals, etc.)

Q 9 n 3 Q s & il
Senior Oops Engineer Vv
@ReinH

Replying to @cmeik
devops is really more of a feeling

1:59 PM - Oct 19, 2020 - Twitter Web App

1 Retweet 14 Likes

Q g L 4 a

Bringing together two traditionally separate groups within software organizations
- Development, typically measured on features completed, code shipped
- Operations, typically measured through stability, reliability, availability

Benefits:

- Increased Velocity: how quickly products and applications are pushed to release
- Increased Quality: successful delivery of features and products

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

Amazon

11

Development transformation at Amazon: 2001-
2009

2009
@° 9@
@@G i @G@
.D@@ @@Q.
> ke ®*
0] @ w W @ ®
@@ ® ® ®@
@6 00
Monolithic Microservices + 2 pizza teams

application + teams

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

Carnegie Mellon University

ISR
School of Computer Science 12

RESEARCH

We were just waiting.

COMPOSE UP
manuaLy Test il I

gradescope

PYTHONDEU MAKE DOCKER-BUILD

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

Carnegie Mellon University

i
School of Computer Science 13

RESEARCH

We were just waiting.

o O e

e PCDDE 96 9

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

Carnegie Mellon University

i
School of Computer Science 19

RESEARCH

17-313 Software Engineering

How do we get to DevOps?

Goals:

1. Technological: Automated process for moving code from dev to release.
Starting with check-in, build, unit test, build artifact,
integration test, load test, as moves through stage to production,
finally, with monitoring and other telemetry.

2. Cultural: Building cohesive, multidisciplinary teams.

Typically, developers are the “first responders” when things go bad in production.
Sense of “ownership” by the developer all the way from inception to release.

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

RESEARCH

institute for | Carnegie Mellon University
I S r SOFTWARE

School of Computer Science

17-313

Software Engineering

What can it look like when it's done?

M

Netflix Spinnaker (open-source CI/CD fully automated pipeline):

* Takes code from code repository to production.

* Allows developers to specify required tests.

* Determines where, how code should be run in system (e.g., replication, placement.)
e Supports canary deployments, traffic management.

e Just publish the repo!

reference: https://www.youtube.com/watch?v=UTKIT6STSVM

5x 440x 46X 44%

lower faster from more frequent more time spent
change commit to deploy deployments on new features
failure rate and code

reference: Puppet State of the DevOps Report 2017

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

17-313 Software Engineering

Choices

Exercise: DevOps Pipeline [S SEE
PSP

(& DA DR DN N\)
|

. - Build container Require Manual
Check in Compilation Run load tests Style check . .
images approval to advance
Peer review Run integration tests Run unit tests Run penetration tests Deploy to prod Record errors

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

17-313 Software Engineering

A Typical DevOps Pipeline

Develop

p=

Check in

Peer review

~

—

institute for
SOFTWARE
RESEARCH

-

Style check

Compilation

Run unit tests

Build container
images

~

—

/

S

Run integration
tests

Run load tests

Run penetration
tests

Require Manual
approval to
advance

~

—

)

Carnegie Mellon University
School of Computer Science

Deploy to prod

~

Monitor

—

Record errors

~

17-313 Software Engineering

What do we need to practice for DevOps? 1

Continuous Integration (Cl)

1. Constant testing as code is checked-in/pushed to the repository (e.g., GH hooks, etc.)
2. Verify the build process works (i.e., parsing, compilation, code generation, etc.)

3. Verify unit tests pass, style checks pass, other static analysis tools.

4. Build artifacts

Continuous Delivery & Deployment (CD)
1. Moving build artifacts from test -> stage -> prod environments.
Environments always differ! (e.g., ENV, PIl, data, etc.)
2. Gate code, if necessary, from advancing without manual approval.
Useful when initially transitioning applications into a modern DevOps pipeline.

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

RESEARCH

institute for | Carnegie Mellon University
I S r SOFTWARE

School of Computer Science

17-313 Software Engineering

What do we need to practice for DevOps? 2

Infrastructure as Code
1. Required resources (e.g., cloud services, access policies, etc.) are created by code.

No Ul provisioning, no manual steps (avoid: easy to forget, time consuming!)
2. “Immutable Infrastructure”

No update-in-place (e.g., SSH to server.)
Replace with new instances, decommission old instances.
3. Nothing to prod without it being in code, checked-in, versioned along side code!

Observability (Monitoring, Logging, Tracing, Metrics)
1. Be able to know how your application is running in production
2. Track and analyze low-level metrics on performance, resource allocation
3. Capture high-level metrics on application behavior
1. What’s “normal”?
2. What’s abnormal?

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

17-313 Software Engineering

Cl/CD

Continuous Integration (Cl)

Commit and check-in code frequently (always can squash later)

Commits build on previous commits (know precisely where the build breaks)
Automated feedback and testing on commits

Artifact creation (e.g., container images, WAR files, etc.)

Ensure code, supporting infrastructure, documentation are all versioned together

ke wneE

Continuous Deployment (CD)

1. Artifacts automatically shipped into test, stage, production environments

2. Prevents “manual” deployment, avoids “manual” steps, early detection of problems
3. Can be tied to a “manual” promotion technique to advance through environments
4. Multi-stage deployment with automatic rollback on failure detection

IH IH

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

Deploying Code

Nightly Build
e Build code and run smoke test (Microsoft 1995)

* Benefits
o It minimizes integration risk
It reduces the risk of low quality

it supports easier defect diagnosis
it improves morale

O

@)

O

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

Ring Deployment: Microsoft

« Commits flow out to rings, de-flight if issue

* For example:
o Ring 0 => Team
Ring 1 => Dogfood
Ring 2 => Beta
Ring 3 => Many
o Ring 4 => All
* Windows 10 Insiders Program
o Dev Channel (weekly builds of Windows 10)
o Beta Channel (dev + validated updates by Microsoft)
o Release Preview Channel (highest quality, validated updates)

O O O

institute for | Carnegie Mellon University
I S r SOFTWARE

ResearcH | ochool of Computer Science

Rapid Release/Mozilla

If deployment requires on-prem deployment, say a web browser
« There are four channels: Nightly, Alpha, Beta, Release Candidate

» Code flows every 2 weeks to next channel, unless fast tracked by
release engineer.

* Involve corporate customer specific testing in testing (Practice also
used by IBM, Redhat)

« same for Windows Edge browser Insiders Program:
o Canary: nightly builds
o Dev: weekly builds
o Beta: 6 weeks

.] / . .
I S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

“Big bang” deployments

State 0

\ Final State

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

RESEARCH

institute for | Carnegie Mellon University
I S r SOFTWARE

School of Computer Science

Fast to Deploy, Slow to Release

e Chuck Rossi at Facebook: “Get your s*** in, fix it in production”

| il —
Chuck Ressi
A \.\ @

- institute for | Carnegie Mellon University
| S r SOFTWARE .
researcH | School of Computer Science

Dark Launches at Instagram

IS

Early: Integrate as soon as possible. Find bugs early. Code can run
in production about 6 months before being publicly announced.

Often: Reduce friction. Try things out. See what works. Push small
changes just to gather metrics, feasibility testing. Large changes just
slow down the team. Do dark launches, to see what performance is
in production, can scale up and down. "Shadow infrastructure" is too
expensive, just do in production.

Incremental: Deploy in increments. Contain risk. Pinpoint issues.

institute for | Carnegie Mellon University
SOFTWARE .
ResearcH | ochool of Computer Science

Facebook process (until 2016)

Trunk/Mainline

Cherry-pick
Release branch

* Release is cut Sunday 6pm
« Stabilize until Tuesday, canaries, release. tuesday push is 12,000 diffs.
° Cherry ple Push 3 times a day (Wed'Frl) 300-700 cherry picks / day.

I S r institute for | Carnegie Mellon University

SOFTWARE .
researcH | School of Computer Science

Facebook quasi-continuous release

100% production { Push-blocking alerts

Push-blocking tasks
Crashbot for WWW
Emergency button

C2R AN RN R G e U N EE : SR -

2% production Push-blocking alerts
Push-blocking tasks

Emergency button

employees

Master]“ ” I ‘
Sandcastle | test
il
institute for | Carnegie Mellon University
|Sr SOFTWARE .
School of Computer Science 20

RESEARCH

Rolling deployments

Final State

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

RESEARCH

institute for | Carnegie Mellon University
I S r SOFTWARE .
School of Computer Science

Red/Black (Blue/Green) deployments

User Traffic

| r Load Balancer
¢ Q§e Ne | Ol O O User Traffic
¢ Ne Je | I I O Y)
e Jo Jeo | e Jeo Jeo | AN

Code Version 1 Code Version 2 l

Load Balancer T

Code Version1 Code Version 2

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

RESEARCH

institute for | Carnegie Mellon University
I S r SOFTWARE

School of Computer Science

Canary deployments

User Traffic

|
0 0 o

Load Balancer

sl |
Most Users i il l | # Few Users

o __Jo RN
Majority Infrastructure _
o __Jo NN

Code Version1 Code Version 2

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

User Traffic

|
o

Load Balancer

Ill

All Infrastructure

Code Version 2

Feature flags

GateKeeper

Project: 64bit_rollout

| History | RenderTime

New Restraint

Rank Move Group D« WHITELIST ME

Restraint Type

all users
(delete)

BLACKLIST ME

Age - Younger
' Application On
LEVl Cancel
Browser ! - Q vuvtxzdqrp
Code Location
| Country : n/a
Datacenter Alpha Def. n/a
A ' - ' ' Is Employee _—
oars - i '| ¥ Barrrlission ,l Friend Count:< Less Updated 4/21/09 3:23:04pm
4 = ; '\ Toggles Friend Count - More Console none
> ! i . 99 " Gatekeeper project Name
O ' Ops g M e f'LD ; Description 64 bit rollout
CCD i Togg|es : St Nz(:m:rk Needs Flush No
) ' os
months | O . 2 B Remote IP
. i 4 % | Server IP
e . _ e D . [l Server Time - After
P My, e 'Experiment ! ' Server Time - Before
% . v Toggles
4 3) 1]
weeks g Release ' . .
] . ’
. Toggles) ‘el
A\l ’
S .
days A -
4 dynamism_
changes with changes with runtime changes with
a deployment re-configuration each request

SOFTWARE .
ResearcH | ochool of Computer Science

I S r institute for | Carnegie Mellon University

Monitoring Production

17-313 Software Engineering

What is Observability?

“As a philosophy, observability is our ability as developers to know and
discover what is going on in our systems. In practice, it means adding
telemetry to our systems in order to measure change and track
workflows.”

The New Stack, “What is observability?” 28 Feb 2020
https://thenewstack.io/what-is-observability/

RESEARCH

institute for |~ Carnegie Mellon University
I S r SOFTWARE

School of Computer Science

17-313 Software Engineering

Observability: Dashboards

1. What’s happening now?

III

2. What does “normal” behavior look like?
3. What does it look like when something’s gone (or is going) wrong?

4. Can | correlate events to changes in the actual graphs?

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

17-313 Software Engineering

Observability: Dashboard Example

Resource utilization Events

@ kubernetes *doc ker Sum requests (CPU) per node Sum requi er node ts Numbe

|
o | o

& | “ |
‘ ‘ - F ARRGR | AT i (RRRTE

Pod deployments - — — — o - - - . Kubernetes Docker
kubernetes-minion-group-c9gx gcr.io/google_containers/fluentd-gcp:1.25
Number of running p node CPU usage per node Memory usage per node ing on group . 100m on kubernetes-minion-group-
xiza 173h.c.datadog-demo-1336.internal
|
kubernetes -minion-group-c9gx gerio/google_containers/fluentd-gep:1.25
“‘ ‘ on inion-group ,x‘m 1 0om on kubernetes-minion-group-
. sill xiza.cdatadog-demo-1336.internal
)
kubernetes - minion-group-c9gx gcrio/google_containers/fluentd-gep:1.25
ing on group B 1 00m on kubernetes-minion-group-
sr9g c9gx.cdatadog-demo-1336.internal
Desired pods Desired pods per deployment 4 RAM-Intensive pods
default/kube-dsxr) 165 o group-c9g gcrio/google_containers/fluentd-gep:1.25
. y Group-kfv 163 099ing o on g .. 100m on kubernetes-minion-group-
k — Group-61g e B —— kfvw.cdatadog-demo-1336.internal
wube * 5 10 'k Joud-k S
$p8 159 k - group-c9g datadog/docker-dd-agentlatest 1
— —_ H - e — on group . exec_create: tail /var/log/syslog -n 50 &
» o »» 099 e 173h exec_start: tail /var/log/syslog -n 5¢ on
A ¥ . 154 9ging-kubes 9 50eb10320e66
Available pods per deployment - 5 -
Y bl ogging o kubernetes-minion-group-c9gx
kube. y 3h 1 k ! h on Inion-group datadog/docker-dd-agentatest 1
’ kube. kube group 8178 default/dd-agent-36sat c9gx W et bin/sh - test
$(/opt/datadog-

agent/embedded /bin/python
/opt/datadog-agent/bin/supervisorct! -
Jetc/dd-agent/supervisor.conf status |
awk '{pri...

kubernetes-minion-group-c9gx
on s group-

Disk 1/0 & Network
120 x . Sp8

Unavailable pods Unavailable pods per deployment in per node twork out per node
A kubernetes - minion-group-c9gx datadog/docker-dd-agentlatest 1
on arouw B execstart /bin/sh —c test
{ Sig $(/opt/datadog-
agent/embedded/ bin/python
. _.WJ\ 28 s : i group-61qi /opt/datadog-agent/bin/supervisorct! —¢
E=— L= : - on P Jetc/dd-agent/supervisor.conf status |
- - P A 4 - e . = 173h awk "(pri...
— Running containers by pod Disk I/O per node T e T 2 &b 9uavio/datadog billstaging 1 exec start
o o gronp- B sh.1execcreate: shoni-
1 3 : - | sr9g 0516da67eac23276
i o bR T SO ger.io/google_containers/fluentd-gep:1.25
pped contain i oo & 100m on kubernetes-minion-group-
cogx sr9g.c.datadog-demo-1336.internal
1 datadog/docker-dd-agentlatest 1
A - - ~ . o . - _ " 1qi jatadog/docker-dd-agentiatest
e i o o A AN z0) - I Woashemediurunadttnnd G B e hin/ah = face

reference: https://datadog-prod.imgix.net/img/blog/monitoring-kubernetes-with-datadog/kubernetes-dashboard.png?fit=max

institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

17-313 Software Engineering

Observability: Defining “Normal”

,,/—”'\// b
i

LA B-A B A B " B L E LN L B'L -2 B L BT wl HE AN R UM DR BE EN g B

reference: https://www.youtube.com/watch?v=vq4QZ4_YDok

RESEARCH

institute for | Carnegie Mellon University
| S r SOFTWARE

School of Computer Science

17-313 Software Engineering

Observability: When things aren’t “Normal”

SPS

PROD:US-EAST-1 O & W &£ =28 Log

SPS Server Successes (License Requests)

HIU—ﬁ_J

1 U { U 1 ' 1 1
10:27 10:30 10:33 10:36 10:39 10:42 10:45 10:48

Legend: M Experiment Ml Control

PROD:US-EAST-1 & @ Automatic
rollback on high

f—J variance!

10.04

1 U ' U U 1 1
10:27 10:30 10:33 10:36 10:39 10:42 10:45 10:48

MONITORING!

This is starting to sound awfully like a
quality attribute....

SOFTWARE
RESEARCH

reference: https://www.youtube.com/watch?v=qyzymLl|j9ag

I S r institute for | Carnegie Mellon University
School of Computer Science

17-313 Software Engineering

Observability: Distributed Tracing

Services 756.000ms 1.512s 2.268s 3.024s 3.78
3.775s : friders/:rideruuid/pickup
-3.000ms : resolveregion
-3.000ms : resolveregion
- 162.000ms : getclient
58.000ms : gettreatmentresult .
62.000ms : /client/uuid/ping -
geospatial - 6.000ms : supply.rpc.multiquery
3.000ms : feyeball’!
33.000ms : /v2/eta/predict-many
onedirection - 4,000ms : fitted_multi
onedirection - 3.000ms : ffitted_multi
82.000ms : /v2/eta/predict-many
4.000ms : /classify
3.000ms : /classify
3.085s : verifypaymentprofile
. 230.000ms : /client/:uuid/j
B.000ms : Leli
100.000ms :
demand 45.000ms.: /
55.000

-

R
R
-
T
R
|

|Sf institute for ‘ Carnegie Mellon University

6.000m
44.(

SOFTWARE
RESEARCH

School of Computer Science

17-313 Software Engineering

Homework 2A: Testing Plan

Develop Build — Test

Monitor 4-‘

In your homework teams, come up with
one concrete task for the build, test, and monitor stages
to verify that your feature works as designed once deployed to production.

RESEARCH

institute for | Carnegie Mellon University
I S r SOFTWARE

School of Computer Science

17-313 Software Engineering

DevOps: More Resources

SRE Books

OREILLY"

ACCELERATE
Building Secure & T r— : e o s
Reliable Systems = ;{lf:‘(g«‘ o,

A T -, Tlffé~ Slte N
Reliability
Workbook

Site

Reliability
Engineering

Heather Adkins, Betsy Beyer, — Edited by Betsy Beyer, ;
Paul Blankinship, Pitr Lewandows, Nt :r:clh:ari Murpty. David K Rensin, Edited by Betsy Beyer, Chris Jones, Nicole Forsgren, Ph D.
na Oprea u ephet Jennifer Petoff & Niall Murphy Jez Humble, Gene Klm
Mactin Fowle Courtrey Kavler
Read online View details Read online View details Read online View details

All available online from CMU Libraries!

institute for |~ Carnegie Mellon University
I S r SOFTWARE .
School of Computer Science

RESEARCH

17-313 Software Engineering

Next Week: QA

Questions?

SOFTWARE .
ResearcH | ochool of Computer Science

0
I S r institute for | Carnegie Mellon University

