
Lecture 16 – Intro to QA,
Testing

Claire Le Goues, Michael Hilton, Chris Meiklejohn

1

Architecture Recap
• “Think before implementing”
• Design and analyze for qualities of interest (e.g., performance,

scalability, security, extensibility)
• From informal sketches to formal models; styles and tactics to guide

discussion

2

Administrativia?

3

Learning goals
• Conceive of testing as an activity designed to achieve coverage

along a number of (non-structural!) dimensions.
• Enumerate testing strategies to help evaluate the following quality

attributes: usability, reliability, security, robustness (both general and
architectural), performance, integration.

• Give tradeoffs and identify when each of those techniques might be
useful.

• Integrate testing into your project’s lifecycle and practices.
• Outline a test plan.

4

QA IS HARD

5

“We had initially scheduled time to write tests for both front and
back end systems, although this never happened.”

6

“Due to the lack of time, we could only conduct individual pages’
unit testing. Limited testing was done using use cases. Our team felt

that this testing process was rushed and more time and effort
should be allocated.”

7

“We failed completely to adhere to the initial [testing] plan. From the
onset of the development process, we were more concerned with

implementing the necessary features than the quality of our
implementation, and as a result, we delayed, and eventually, failed to

write any tests.”

8

Time estimates (in hours):

9

Activity Estimated Actual
testing plans 3 0
unit testing 3 1
validation testing 4 2
test data 1 1

“One portion we planned for but were not able to complete to our
satisfaction was testing.”

10

“[W]e did not end up using Github Issues and Milestones for
progress tracking, because of our concern for implementing

features. Additionally, once we started the development process, we
felt that Github Issues and Milestones had too much overhead for

only a week-long development process.”

11

QA IS IMPORTANT (DUH!)

12

Cost

13

Cost

14

QA HAS MANY FACETS

15

Questions
• How can we ensure that the specifications are correct?
• How can we ensure a system meets its specification?
• How can we ensure a system meets the needs of its users?
• How can we ensure a system does not behave badly?

16

Validation vs Verification
• Verification: Does the system meet its specification?

o i.e. did we build the system correctly?
• Verification: are there flaws in design or code?

o i.e. are there incorrect design or implementation decisions?
• Validation: Does the system meet the needs of users?

o i.e. did we build the right system?
• Validation: are there flaws in the specification?

o i.e., did we do requirements capture incorrectly?

17

Brief Case Discussion

18

What qualities are important and
how can you assure them?

VERY IMPORTANT
• There is no one analysis technique that can perfectly address all

quality concerns.
• Which techniques are appropriate depends on many factors, such

as the system in question (and its size/complexity), quality goals,
available resources, safety/security requirements, etc etc…

19

Definition: software analysis

The systematic examination of a
software artifact to determine its

properties.

20

Attempting to be comprehensive, as
measured by, as examples:

Test coverage, inspection checklists,
exhaustive model checking.

Definition: software analysis

The systematic examination of a
software artifact to determine its

properties.

21

Automated: Regression testing, static
analysis, dynamic analysis
Manual: Manual testing, inspection,
modeling

Definition: software analysis

The systematic examination of a
software artifact to determine its

properties.

22

Code, system, module, execution
trace, test case, design or
requirements document.

Definition: software analysis

The systematic examination of a
software artifact to determine its

properties.

23

Functional: code correctness
Non-functional: evolvability, safety,
maintainability, security, reliability,
performance, …

Principle techniques
• Dynamic:

o Testing: Direct execution of code on test data in a controlled environment.
o Analysis: Tools extracting data from test runs.

• Static:
o Inspection: Human evaluation of code, design documents (specs and

models), modifications.
o Analysis: Tools reasoning about the program without executing it.

24

No Single Technique
• There is no one analysis technique that can perfectly address all

quality concerns.
• Which techniques are appropriate depends on many factors, such

as the system in question (and its size/complexity), quality goals,
available resources, safety/security requirements, etc etc…

25

“Traditional” coverage
• Statement
• Branch
• Function
• Path (?)
• MC/DC

26

We can measure coverage on almost anything

27

A. Zeller, Testing and Debugging Advanced course, 2010

We can measure coverage on almost anything

• Common adequacy criteria for testing approximate full
“coverage” of the program execution or specification space.

• Measures the extent to which a given verification activity has
achieved its objectives; approximates adequacy of the activity.
o Can be applied to any verification activity, although most frequently

applied to testing.
• Expressed as a ratio of the measured items executed or

evaluated at least once to the total number of measured items;
usually expressed as a percentage.

28

CLASSIC TESTING
(FUNCTIONAL CORRECTNESS)

29

What is testing?
• Direct execution of code on test data in a controlled environment
• Principle goals:

o Validation: program meets requirements, including quality attributes.
o Defect testing: reveal failures.

• Other goals:
o Reveal bugs (main goal)
o Assess quality (hard to quantify)
o Clarify the specification, documentation
o Verify contracts

30

"Testing shows the presence,
not the absence of bugs.”

-Edsger W. Dijkstra 1969

Software Errors
• Functional errors
• Performance errors
• Deadlock
• Race conditions
• Boundary errors
• Buffer overflow
• Integration errors
• Usability errors
• Robustness errors
• Load errors

• Design defects
• Versioning and configuration

errors
• Hardware errors
• State management errors
• Metadata errors
• Error-handling errors
• User interface errors
• API usage errors
• …

What are we covering?
• Program/system functionality:

o Execution space (white box!).
o Input or requirements space (black box!).

• The expected user experience (usability).
o GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
o Security, robustness, fuzz, and infrastructure testing.
o Performance and reliability: soak and stress testing.
o Integration and reliability: API/protocol testing

32

33

Testing Levels
• Unit testing
• Integration testing
• System testing

34

JUnit

• Popular unit-testing framework for Java
• Easy to use
• Tool support available
• Can be used as design mechanism

Test Driven Development
• Tests first!
• Popular

agile technique
• Write tests as

specifications before code
• Never write code without

a failing test
• Claims:
• Design approach toward testable design
• Think about interfaces first
• Avoid writing unneeded code
• Higher product quality (e.g. better code, less defects)
• Higher test suite quality
• Higher overall productivity

(CC BY-SA 3.0)
Excirial

http://en.wikipedia.org/wiki/User:Excirial

Continuous Integration

Automatically builds, tests,
and displays the result

Testing with Stubs

CodeFacebook
Interface

Android client

class ConnectionError implements FacebookInterface {
List<Node> getPersons(String name) {

throw new HttpConnectionException();
}

}

@Test void testConnectionError() {
assert getFriends(new ConnectionError()) == null;

}

Test driver
(JUnit)

Facebook

Stub

Connection
Error

Regression testing
• Usual model:

o Introduce regression tests for bug fixes, etc.
o Compare results as code evolves

§ Code1 + TestSet à TestResults1
§ Code2 + TestSet à TestResults2

o As code evolves, compare TestResults1 with TestResults2, etc.
• Benefits:

o Ensure bug fixes remain in place and bugs do not reappear.
o Reduces reliance on specifications, as <TestSet,TestResults1> acts as one.

39

The Oracle Problem

40

Parameters

Input
generator SUT

Golden
standard

Comparator

Fail

Pass

ObserverInput
generator SUT Exception

Normal

Parameters

Crash

Input
generator SUT

Pass

Parameters

Fails

Assertions

TESTING BEYOND
FUNCTIONAL CORRECTNESS

41

What are we covering?
• Program/system functionality:

o Execution space (white box!).
o Input or requirements space (black box!).

• The expected user experience (usability).
o GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
o Security, robustness, fuzz, and infrastructure testing.
o Performance and reliability: soak and stress testing.
o Integration and reliability: API/protocol testing

42

TESTING USABILITY

43

Usability Testing
• Specification?
• Test harness? Environment?
• Nondeterminism?
• Unit testing?
• Automation?
• Coverage?

44

Automating GUI/Web Testing

• This is hard
• Capture and Replay Strategy

o mouse actions
o system events

• Test Scripts: (click on button
labeled "Start" expect value X in
field Y)

• Lots of tools and frameworks
o e.g. JUnit + Jemmy for Java/Swing

• (Avoid load on GUI testing by
separating model from GUI)

• Beyond functional correctness?

45

Manual Testing?

• Live System?
• Extra Testing System?
• Check output / assertions?
• Effort, Costs?
• Reproducible?

Usability: A/B testing
• Controlled randomized experiment with two variants, A and B,

which are the control and treatment.
• One group of users given A (current system); another random

group presented with B; outcomes compared.
• Often used in web or GUI-based applications, especially to test

advertising or GUI element placement or design decisions.

47

Example
• A company sends an advertising email to its customer database,

varying the photograph used in the ad...

48

Example: group A (99% of users)

•Act now!
Sale ends
soon!

49

Example: group B (1%)

•Act now!
Sale ends
soon!

50

What are we covering?
• Program/system functionality:

o Execution space (white box!).
o Input or requirements space (black box!).

• The expected user experience (usability).
• The expected performance envelope (performance, reliability,

robustness, integration).
o Security, robustness, fuzz, and infrastructure testing.
o Performance and reliability: soak and stress testing.
o Integration and reliability: API/protocol testing

51

TESTING SECURITY/ROBUSTNESS

52

Security/Robustness Testing
• Specification?
• Test harness? Environment?
• Nondeterminism?
• Unit testing?
• Automation?
• Coverage?

53

Random testing
• Select inputs independently at random from the program’s

input domain:
o Identify the input domain of the program.
o Map random numbers to that input domain.
o Select inputs from the input domain according to some

probability distribution.
o Determine if the program achieves the appropriate outputs

on those inputs.
• Random testing can provide probabilistic guarantees about

the likely faultiness of the program.
o E.g., Random testing using ~23,000 inputs without failure (N

= 23, 000) establishes that the program will not fail more than
one time in 10,000 (F = 104), with a confidence of 90% (C =
0.9).

54

Reliability: Fuzz testing
• Negative software testing method that feeds malformed and

unexpected input data to a program, device, or system with the
purpose of finding security-related defects, or any critical flaws
leading to denial of service, degradation of service, or other
undesired behavior (A. Takanen et al, Fuzzing for Software Security
Testing and Quality Assurance, 2008)

• Programs and frameworks that are used to create fuzz tests or
perform fuzz testing are commonly called fuzzers.

55

Types of faults found
• Pointer/array errors
• Not checking return codes
• Invalid/out of boundary data
• Data corruption
• Signed characters
• Race conditions
• Undocumented features
• …Possible tradeoffs?

56

Fuzzing process

57

TESTING PERFORMANCE

58

Unit and regression testing for performance
• Measure execution time of critical components
• Log execution times and compare over time

59

Performance testing tools: JMeter

http://jmeter.apache.org

http://jmeter.apache.org/

Profiling
• Finding bottlenecks in

execution time and
memory

61

Performance Testing during Design
• Modeling and

simulation
o e.g. queuing

theory

62

Stress testing
• Robustness testing technique: test beyond the limits of normal

operation.
• Can apply at any level of system granularity.
• Stress tests commonly put a greater emphasis on robustness,

availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal
circumstances.

63

Soak testing
• Problem: A system may behave exactly as expected under

artificially limited execution conditions.
o E.g., Memory leaks may take longer to lead to failure (also motivates

static/dynamic analysis, but we’ll talk about that later).
• Soak testing: testing a system with a significant load over a

significant period of time (positive).
• Used to check reaction of a subject under test under a possible

simulated environment for a given duration and for a given
threshold.

64

65

Chaos monkey/Simian army
• A Netflix infrastructure testing system.
• “Malicious” programs randomly trample on components, network,

datacenters, AWS instances…
o Chaos monkey was the first – disables production instances at random.
o Other monkeys include Latency Monkey, Doctor Monkey, Conformity

Monkey, etc… Fuzz testing at the infrastructure level.
o Force failure of components to make sure that the system architecture is

resilient to unplanned/random outages.
• Netflix has open-sourced their chaos monkey code.

66

Brief Case Discussion

67

What qualities are important and
how can you assure them?

What are we covering?
• Program/system functionality:

o Execution space (white box!).
o Input or requirements space (black box!).

• The expected user experience (usability).
o GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
o Security, robustness, fuzz, and infrastructure testing.
o Performance and reliability: soak and stress testing.
o Integration and reliability: API/protocol testing

68

Testing purposes - 1

Technique Description

Baseline testing • Execute a single transaction as a single virtual user for a
set period of time or for a set number of transaction
iterations

• Carried out without other activities under otherwise
normal conditions

• Establish a point of comparison for further test runs
Load testing • Test application with target maximum load but typically no

further
• Test performance targets (i.e. response time, throughput,

etc.)
• Approximation of expected peak application use

Scalability
testing

• Test application with increasing load
• Scaling should not require new system or software

redesign

Testing purposes - 2

Technique Description
Soak (stability)
testing

• Supply load to application continuously for a period
of time

• Identify problems that appear over extended period
of time, for example a memory leak

Spike testing • Test system with high load for short duration
• Verify system stability during a burst of concurrent

user and/or system activity to varying degrees of
load over varying time periods

Stress testing • Overwhelm system resources
• Ensure the system fails and recovers gracefully

Completeness?
• Statistical thresholds

o Defects reported/repaired
o Relative proportion of defect kinds
o Predictors on “going gold”

• Coverage criterion
o E.g., 100% coverage required for avionics software
o Distorts the software
o Matrix: Map test cases to requirements use cases

• Can look at historical data
o Within an organization, can compare across projects; Develop expectations and

predictors
o (More difficult across organizations, due to difficulty of commensurability, E.g.,

telecon switches vs. consumer software)
• Rule of thumb: when error detection rate drops (implies diminishing

returns for testing investment).
• Most common: Run out of time or money

71

