Lecture 16 — Intro to QA,
Testing

Claire Le Goues, Michael Hilton, Chris Meiklejohn

. . . .
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Architecture Recap

« "Think before implementing”

« Design and analyze for qualities of interest (e.g., performance,
scalability, security, extensibility)

» From informal sketches to formal models; styles and tactics to guide
discussion

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Administrativia?

SOFTWARE .
ResearcH | ochool of Computer Science

S r institute for (Carnegie Mellon University

Learning goals

 Conceive of testing as an activity designed to achieve coverage
along a number of (non-structural!) dimensions.

« Enumerate testing strategies to help evaluate the following quality
attributes: usability, reliability, security, robustness (both general and
architectural), performance, integration.

 Give tradeoffs and identify when each of those techniques might be
useful.

* Integrate testing into your project’s lifecycle and practices.
« Qutline a test plan.

institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

QA IS HARD

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

“We had initially scheduled time to write tests for both front and
back end systems, although this never happened.”

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

“Due to the lack of time, we could only conduct individual pages’
unit testing. Limited testing was done using use cases. Our team felt
that this testing process was rushed and more time and effort
should be allocated.”

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

“We failed completely to adhere to the initial [testing] plan. From the
onset of the development process, we were more concerned with
implementing the necessary features than the quality of our
implementation, and as a result, we delayed, and eventually, failed to
write any tests.”

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Time estimates (in hours):

Activity | Estimated Actual ___

testing plans
unit testing
validation testing
test data

~ A W W
_ N R O

Sf institute for Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

“One portion we planned for but were not able to complete to our
satisfaction was testing.”

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

1Sf

“[W]e did not end up using Github Issues and Milestones for
progress tracking, because of our concern for implementing
features. Additionally, once we started the development process, we
felt that Github Issues and Milestones had too much overhead for
only a week-long development process.”

institute for |~ Carnegie Mellon University
SOFTWARE .
ResearcH | ochool of Computer Science

QA IS IMPORTANT (DUH!)

0
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Cost

M|

institute for
SOFTWARE
RESEARCH

Relative Cost of Software Fault Propogation
368

400
350
300
250

“1” ldentifies
Phase Defect
Introduced

(Carnegie Mellon University
School of Computer Science

Relative
Cost to
Repair

b. e é‘ Customer
1 > Integration
— Test
Code
Design
<&° -\o“ Requirements
é'z}- Phase
& Repaired

Cost

M|

institute for
SOFTWARE
RESEARCH

theguardian

News US World Sports Comment Culture Business Money Environment Science ’

Technology) Heartbleed

Heartbleed: developer who introduced = ®swe «o

the error regrets 'oversight' W Tweet | 269

Submitted just seconds before new year in 2012, the bug 81| 27

'slipped through' — but discovery 'validates' open source m Share |< 103
Email

Alex Hern E B

W Follow @alexhern W Follow @guardiantech
. . . Technology
th rdian. , Friday 11 April 2014 03.05 EDT
eguardian.com, Fricay en Heartbleed - Open source

E Jump to comments (108) - Programming - Software
- Internet - Hacking - Data
and computer security

More news

More on this story

L

(Carnegie Mellon University
School of Computer Science

QA HAS MANY FACETS

SOFTWARE .
ResearcH | ochool of Computer Science

S r institute for (Carnegie Mellon University

Questions

How can we ensure that the specifications are correct?

How can we ensure a system meets its specification?

How can we ensure a system meets the needs of its users?

|Sr institute for | Carnegie Mellon University

How can we ensure a system does not behave badly?

SOFTWARE
RESEARCH

School of Computer Science

Validation vs Verification

Verification: Does the system meet its specification?
o le. did we build the system correctly?

Verification: are there flaws in design or code?
o le. are there incorrect design or implementation decisions?

Validation: Does the system meet the needs of users?
o le. did we build the right system?

Validation: are there flaws in the specification?
o Ie., did we do requirements capture incorrectly?

| S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Brief Case Discussion

What qualities are important and
how can you assure them?

. . . .
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

VERY IMPORTANT

 There is no one analysis technique that can perfectly address all
quality concerns.

« Which techniques are appropriate depends on many factors, such
as the system in question (and its size/complexity), quality goals,
available resources, safety/security requirements, etc etc...

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Attempting to be comprehensive, as
measured by, as examples:
Test coverage, inspection checklists,
exhaustive model checking.

institute for |~ Carnegie Mellon University
| S r SOFTWARE .
ResearcH | ochool of Computer Science

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Automated: Regression testing, static
analysis, dynamic analysis

Manual: Manual testing, inspection,
modeling

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Code, system, module, execution
trace, test case, design or
requirements document.

institute for |~ Carnegie Mellon University
| S r SOFTWARE .
ResearcH | ochool of Computer Science

Definition: software analysis

The systematic examination of a
software artifact to determine its
properties.

Functional: code correctness
Non-functional: evolvability, safety,
maintainability, security, reliability,
performance, ...

institute for |~ Carnegie Mellon University
| S r SOFTWARE .
ResearcH | ochool of Computer Science

Principle techniques

* Dynamic:
o Testing: Direct execution of code on test data in a controlled environment.
o Analysis: Tools extracting data from test runs.

e Static:

o Inspection: Human evaluation of code, design documents (specs and
models), modifications.

o Analysis: Tools reasoning about the program without executing it.

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

No Single Technique

 There is no one analysis technique that can perfectly address all
quality concerns.

« Which techniques are appropriate depends on many factors, such
as the system in question (and its size/complexity), quality goals,
available resources, safety/security requirements, etc etc...

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

“Traditional” coverage

e Statement

Branch

Function
Path (?)
MC/DC

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

We can measure coverage on almost anything

(D[t | £k view Drow Object wa
QA tew Cuhl
4:4 Open... O
| gon

i bl see

dre 25
J D tiew Ctrn
-

G| g ko

View Draw Cbject

Ixit Function

Left ne, 1) = *'0 T
nt
2 1 @ comment, 30 teat if it 13 4 comment or i th B T
. N
It Indrr(sla » *> 0 Then
aPrevChar = *
10uoteCount = 0

53 Draweli Application - [Drawel5) [I
DR e o o o XY EACEATETE

R B [I Chrbak RN e | Be Edk Yiew Draw
O tew e | Crkh

Qulss

For leeunt = | To Len{sline)
ar = Mid(shine. loours, 1)

30 e

institute for |~ Carnegie Mellon University
SOFTWARE .
ResearcH | ochool of Computer Science

We can measure coverage on almost anything

« Common adequacy criteria for testing approximate full
“coverage” of the program execution or specification space.

« Measures the extent to which a given verification activity has
achieved its objectives; approximates adequacy of the activity.

o Can be applied to any verification activity, although most frequently

applied to testing.
« Expressed as a ratio of the measured items executed or
evaluated at least once to the total number of measured items;

usually expressed as a percentage.

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

CLASSIC TESTING
(FUNCTIONAL CORRECTNESS)

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

What is testing?

e Direct execution of code on test data in a controlled environment

* Principle goals:
o Validation: program meets requirements, including quality attributes.
o Defect testing: reveal failures.

« Other goals:
o Reveal bugs (main goal)
o Assess quality (hard to quantify)
o Clarify the specification, documentation
o Verify contracts

"Testing shows the presence,
not the absence of bugs.”
-Edsger W. Dijkstra 1969

Software Errors

 Functional errors Design defects
 Performance errors Versioning and configuration
« Deadlock errors

« Race conditions « Hardware errors

« Boundary errors State management errors

« Buffer overflow « Metadata errors

« Integration errors * Error-handling errors

» Usability errors * User interface errors

* Robustness errors * APl usage errors

 Load errors

SOFTWARE
RESEARCH

institute for | (Carnegie Mellon University

School of Computer Science

What are we covering?

* Program/system functionality:
o Execution space (white box!).
o Input or requirements space (black box!).

* The expected user experience (usability).
o GUI testing, A/B testing

« The expected performance envelope (performance, reliability,
robustness, integration).
o Security, robustness, fuzz, and infrastructure testing.
o Performance and reliability: soak and stress testing.
o Integration and reliability: APl/protocol testing

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

Packages Coverage Report - All Packages
Al

net.sourceforge.cobertura.ant . EClassta
All Packages 55 64%
net.sourceforge.cobertura.check
ot sourcelone.coberkura,covaraoedel net.sourceforge.cobertura.ant 11 43%
net.sourceforge.cobertura.instrument fetscuicefoioecobenuiachedh 3 o
net sourceforge cobertura.merge net.sourceforge.cobertura.coveragedata 13 N/A | N/A | N/A | N/A |
net sourceforge.cobertura.reporting net.sourceforge.cobertura.instrument 10 ooe | aeaisi0 7550 [azaes
net. sourceforge.cobertura.reporting.h net.sourceforge.cobertura.merge 1 sex [ssv [aae
net.souroeforqe.oobertura.reDorﬁnq.hlLJj e = 3 ar [eos IS
et sourcelore coberiura reporting ! net.sourceforge.cobertura.reporting html 4 o [EEESE oy |
net.sourceforge.cobertura.util o || ‘net.sourceforge.cobertura.reporting htmifiles 1 sm (S 2% [
" . | net.sourceforge.cobertura.reporting.xml 1 1000 [o5 [
i —— net sourceforge.cobertura.uti 9 | sove [7o
All Packages | 1 s (IS NA | N/A I
Report generated by Cobertura 1.9 on 6/9/07 12:37 AM.
Classes
AntUtil (88%)
Archive (100%)
ArchiveUtil (80%)
BranchCoverageData (N/A)
CheckTask (0%)
ClassData (N/A)
ClassInstrumenter (949%)
ClassPattern (100%)
CoberturaFile (73%)
CommandLineBuilder (96%)

CommonMatchingTask (88%)
ComplexityCalculator (100%)
ConfigurationUtil (50%)
CopyFiles (87%)

CoverageData (N/A)
CoverageDataContainer (N/A)
CoverageDataFileHandler (N/A)
CoverageRate (0%)
ExcludeClasses (100%)
FileFinder (96%)

FileLocker (0%)
FirstPassMethodInstrumenter (100%)
HTMLReport (94%)
HasBeenlInstrumented (N/A)
Header (80%)

Testing Levels

 Unit testing
* Integration testing
« System testing

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

JUnit

* Popular unit-testing framework for Java
* Easy to use

* Tool support available

* Can be used as design mechanism

Problems @ Javadoc [& Declaration Ju JUnit 8 4 ¢ P BE @ B B~ Y = B
Finished after 0.012 seconds
Runs: 4/4 B Errors: 0 B Failures: 1 |
> fi edu.cmu.cs.cs214.hwi.tests.AlgorithmTest [Runner: JUnit 4] (0.000s) = Failure Trace '?‘
¥ g edu.cmu.cs.cs214.hwi.tests.AdjacencyMatrixTest [Runner: JUnit 4] (0.000s) J9 java.lang.AssertionError: Expected exception: java.lang.NullPointerException

3
¢l basicNullTest2 (0.000 s)
> fi edu.cmu.cs.cs214.hwi.tests.AdjacencyListTest [Runner: JUnit 4] (0.000 s)

School of Computer Science

Test Driven Development

———————————————————— —Repeat- — —

Test
succeeds

o Tests first!

* Popular
agile technique

* Write tests as
specifications before code

* Never write code without
a failing test

« Claims:
» Design approach toward testable design
« Think about interfaces first
« Avoid writing unneeded code d-
« Higher product quality (e.g. better code, less defects)
« Higher test suite quality
« Higher overall productivity

SOFTWARE
RESEARCH

|Sf institute for | (Carnegie Mellon University

School of Computer Science

http://en.wikipedia.org/wiki/User:Excirial

Continuous Integration
[iz e |)

& Build #17 - wyvernla x ‘ 2
€« C A @ https;//travis-ci.org/wyvernlang, 7| =

Blog Status Help Jonathan Aldrich @

wyvernlang / wyvern ©

Repositories ~urrent

ests Build #17

17 0 SimpleWyvern-devel Asserting false (works on Linux, so its C

-0

potanin authored and committed 3 days

Automatically builds, tests,
and displays the result

cy infrastructure. Ple

1 0Ur docs on NnoOw

X= Remove Log J= Download Log l

Using worker: worker-linux-@27f849@-1.bb.travis-ci.org:travis-linux-2 []
tem_info

Build system information sys

$ git clone --depth=5@ --branch=SimpleWyvern-devel git.checkout
$ jdk_switcher use oraclejdk8

Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to /usr/lib/jvm/java-8-oracle

$ java -Xmx32m -version

java version "1.8.0_31"

Java(TM) SE Runtime Environment (build 1.8.0_31-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b®7, mixed mode)
$ javac -J-Xmx32m -version

javac 1.8.0_31

$ cd tools

institute for Car

SOFTWARE
RESEARCH SC

Testing with Stubs

Stub Test driver
(JUnit)
Facebook Facebook Code Android client
Interface
Connection
Error

class ConnectionError implements FacebookInterface {
List<Node> getPersons(String name) {

throw new HttpConnectionException();

by
by
@Test void testConnectionError() {
assert getFriends(new ConnectionError()) == null;

¥

Regression testing

e Usual model:

o Introduce regression tests for bug fixes, etc.
o Compare results as code evolves

» Codel + TestSet > TestResults1

» Code2 + TestSet > TestResults2

o As code evolves, compare TestResults1 with TestResults2, etc.
* Benefits:

o Ensure bug fixes remain in place and bugs do not reappear.
o Reduces reliance on specifications, as <TestSet, TestResults1> acts as one.

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

The Oracle Problem

Parameters Fail

Input
generator

Comparator

Golden
standard

Parameters

Input
generator

Parameters

Pass

Input

generator

Assertions

SUT

Observer

—> Normal
—> Exceptiol

—> Crash

40

TESTING BEYOND
FUNCTIONAL CORRECTNESS

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

What are we covering?

* Program/system functionality:
o Execution space (white box!).
o Input or requirements space (black box!).

* The expected user experience (usability).
o GUI testing, A/B testing

« The expected performance envelope (performance, reliability,
robustness, integration).
o Security, robustness, fuzz, and infrastructure testing.
o Performance and reliability: soak and stress testing.
o Integration and reliability: APl/protocol testing

| S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

TESTING USABILITY

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Usability Testing

 Specification?

» Test harness? Environment?
* Nondeterminism?

* Unit testing?

e Automation?

* Coverage?

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Automating GUI/Web Testing

e This is hard

e Capture and Replay Strategy
O mouse actions

o system events

e Test Scripts: (click on button
labeled "Start" expect value X in
field Y)

e Lots of tools and frameworks ‘

o e.g.JUnit + Jemmy for Java/Swing

e (Avoid load on GUI testing by
separating model from GUI)

Failure analysis

* Beyond functional correctness?

RESEARCH

institute for |~ Carnegie Mellon University
| S r SOFTWARE

School of Computer Science

Manual Testing?

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
. 5 Select “Insert Picture” Insert Picture Menu opens
 Live SyStem? 6 Select Picture Picture 1s Selected
. 7 Select “Send Message” Message 1s correctly sent

Extra Testing Systen

Check output / assertions?
Effort, Costs?
Reproducible?

|Sr institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Usability: A/B testing

« Controlled randomized experiment with two variants, A and B,
which are the control and treatment.

« One group of users given A (current system); another random
group presented with B; outcomes compared.

« Often used in web or GUI-based applications, especially to test
advertising or GUI element placement or design decisions.

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Example

« A company sends an advertising email to its customer database,
varying the photograph used in the ad...

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Example: group A (99% of users)

eAct now!
Sale ends
soon!

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Example: group B (1%)

eAct now!
Sale ends
soon!

institute for |~ Carnegie Mellon University
| S r SOFTWARE .
ResearcH | ochool of Computer Science

What are we covering?

* Program/system functionality:
o Execution space (white box!).
o Input or requirements space (black box!).

* The expected user experience (usability).

* The expected performance envelope (performance, reliability,

robustness, integration).

o Security, robustness, fuzz, and infrastructure testing.
o Performance and reliability: soak and stress testing.
o Integration and reliability: APl/protocol testing

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

TESTING SECURITY/ROBUSTNESS

0
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Security/Robustness Testing

 Specification?

» Test harness? Environment?
* Nondeterminism?

* Unit testing?

e Automation?

* Coverage?

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Random testing

 Select inputs independently at random from the program’s
Input domain:
o ldentify the input domain of the program.
o Map random numbers to that input domain.
o Select inputs from the input domain according to some
probability distribution.
o Determine if the program achieves the appropriate outputs
on those inputs.
« Random testing can provide probabilistic guarantees about
the likely faultiness of the program.

o E.g., Random testing using ~23,000 inputs without failure (N
= 23, 000) establishes that the program will not fail more than
one time in 10,000 (F = 10%), with a confidence of 90% (C =

0.9).

(Carnegie Mellon University

1S
ResearcH | ochool of Computer Science

Reliability: Fuzz testing

* Negative software testing method that feeds malformed and
unexpected input data to a program, device, or system with the
purpose of finding security-related defects, or any critical flaws
leading to denial of service, degradation of service, or other
undesired behavior (A. Takanen et al, Fuzzing for Software Security
Testing and Quality Assurance, 2008)

* Programs and frameworks that are used to create fuzz tests or
perform fuzz testing are commonly called fuzzers.

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Types of faults found

 Pointer/array errors

* Not checking return codes

* Invalid/out of boundary data
« Data corruption

 Signed characters

 Race conditions

« Undocumented features

* ...Possible tradeoffs?

institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Fuzzing process

FUZZER @

SUT

~ ~
‘GET / HIIT/1.3
Aecupts dmoge/eil, mage/x-sbiteap,
froncitt datlat
P vy 9zip, ate -~ ~
A.mec mp Aive VALID request g:‘:{li:an:f:m 2007 09:44:49 GMT
Seyver: nykedServer/2.1 |Linux)
Lage-dodlfled: Wed, 07 Nov 2007 09:44:36 OMT
S~ Necept-Ranges; bytes
4 Coneent-Length: 130
Coauction: cloae
'GET aAak AaAaAnAaA A Centent -Type: toxt/Mel; charaet-UTT-8
HTTP/1.1
Accept: image/gif, lmage/x-bitsap, _J
irage/ipeq, */* ~ ~
Accept-Encoding: gzlip, dellate
AcCept-language: en-un
Connvacticons Feep-All HTTP/3.1 404 Not Found
TYPRLISRIND Dote: Wed, 07 Now 2007 03149:27 GMT
b Server: MyWebSerser/2.1 |Linux)
Cecatent -length: 284
- Cenrectica: close
Centent-Type: text/ktml;
GET tstntxtsts\ststsia\ats HTTP/1.1 chareetsieo-6359-1
Accept: hugc;gx 4 lmage/x-xbitnep,
nr.\rljpcq * -
Azcept- a'nodqu gup. deflate ANOMALY -~ ™~
Azcept-larguage: en-us sent
Connacticar ¥ J.llva
o » Yty KT78/1.1 $00 Intermal Server Srror
Dates Tue, 01 Jan 1570 €€.00.00 GMT
N~ Corvers (
- N Centent-length: -1
Cearent-Typer PYPP
,m nzrpe// Conrection: ¢lose
0] ETTR/1.1
a\.ccpz tmcm'al(bragu/A-xliteop, —
Aer RSty quip, dotta: € h
= 2ip, ate
ol adp kv ta b X ANOMALY sent
Connacticas:)wp “Alive
S

institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

TESTING PERFORMANCE

SOFTWARE .
ResearcH | ochool of Computer Science

S r institute for (Carnegie Mellon University

Unit and regression testing for performance

« Measure execution time of critical components
* Log execution times and compare over time

Jenkins gatling_load_test Gatling

4 Back to Dashboard gatling_load_test - Performance Trend

O, Status
99th percentile response time

= Changes 1200 ms
(;j‘ Workspace

£) Build Now

® Delete Project

800 ms

2. Configure
@,‘r@ Gatling

Build History trend =

¥
]

1 28-Apr-2015 11:33 400 ms

3
I~

1 28-Apr-2015 11:32

28-Apr-2015 11:31 200 ms

SOFTWARE
RESEARCH

School of Cd

¥
=
o

28-Apr-2015 11:30

institute for | Carnegie Mellg
|Sf Institute |

© © 0 0 @O
3+
>

3%
=
N

28-Apr-2015 11:29 oms

Performance testing tools: JMeter

HTTP DoS Attacker.jmx (/Users/jsg/Documents/MSE/Classes/17-699_S12/JMeter/apache-jmeter-2.7/bin/HTTP DoS Attacker.jmx) - Apache JMeter (2.7 r1342410)
File Edit Search Run Options Help

D@l B &I BE +[= 4 ke e

(%1% /% (o |d (6% 2B

0 A 0/0 M
v “; Test Plan
v E‘ HTTP DoS Attacker VHTTP Req uest
View Results in Table Name: HTTP Request
m HTTP Request Defaults
/* I Comment:
Graph Results Web Server | Timeouts (milliseconds)
iZ| WorkBench Server Name or IP: www.mal.com Port Number: 80 Connect: Response:
rHTTP Request
Implementation: T Protocol [http]: Method: CET (] Content encoding:
Path:
Redirect Automatically v Follow Redirects Use KeepAlive Use multipart/form-data for POST Browser-compatible headers
Send Parameters With the Request:
Name: Value Encode? Include Equals?
Detail Add Add from Clipboard Delete Up Down
Send Files With the Request:
File Path: Parameter Name: MIME Type:
Add Browse... Delete
. . . . _ LY.
institute for | Carnegie Mellon Universit

SOFTWARE

ResearcH | ochool of Computer Science

http://jmeter.apache.org/

Profiling

 Finding bottlenecks in
execution time and
memory

& VisualvM 1.2 [ESESE =5
|File Applications View Tcols Window Help
LB 3R R =
Il @ =|[StatPage u| & Jovameno (pd 4375) x| HEE
= i eal [[0 Overvien | i Monstor | = Thweads | (33 Sampler | ©) profier| @ [snspshor] 11:57:27 AM % | .
¢ VisushvM =
= g Java2Dems (pd 4376) C Java2Demo (pid 4376) \
@ [snapshot] 12:57:27 an Profier Snapshot (
& Remote - — . [
s 15 |+ View: (] Methods '@EQ%Q‘ ‘
Cal Tree - Methed Time [%] v Tire Time (CPU) Invocations [E]
5} C2 AWT-EventQueue-0 T 21563 . (0] 0523 me 1 -
£ 99 jvaawtEventiispatchTheead. G 21553 .. (100%) 20523 ms 110
=3 sava.ont.EventDzpatchThee NG 21523 ... (100% 20523 ms i
= 3 java.awt.EventDspatch [21553 ... (oo NV53ms 110
=W raawteveneo: [IIING 21563 ... (20 20523 ms 110
£ 34 java.ant.Events I 21563 ... (:00%) 0523 ms up ~
“« " | ’
Mot Spots - Method Self time ... v Seif tme Seif ime (CPU) Invocations LI_IJ
sun java2d. SurGraphics20. drawstring) [16941 .70 16793 ms 13 -
sun.Java2d.SunGraphecs20. fill 1 1447 ms (64% 135tms %
javax.swng. JComponent. paintimmedsat || 1218ms (3.5% 97.8ms 108
SN Javadd, SunGraphics 20, draw (. | 690 ms (3.1%) 690 ms 7
st font. TextLayout. <init> () | Wims (13%) 404ms 4
A S X, " R - 3 1 205 2 200 2
) ‘ F C) . M ll . z Method Name F ‘.':(:-—
Institute ror arnegie lvie on Uni T Call Tree | [Mot 500 | 55 Combined | @ 100
|Sr SOFTWARE S h |]CC
RESEARCH CNooIorLomp

Performance Testing during Design

* Modeling and
simulation

&2 View Report - 3 - Multithreading and QueuingArchitecture Simulator

Evaluation Summary
o € ueuin Prooerty [value
¢ g ° q g Scenario Scenariol

Number of users S

t h e O ry Transaction Generation Rate 3
Actual Simulation Load
Actual Network Load 0
No. of System Transactions Generated {ST1=24, ST2=24}
No. of System Transactions Completed {5T1=24, ST2=24}
Averaoe Svstem Transaction Completion Time 156938
Choose a Graph

@ ;]v View Error Report

Palette

Asset

- Database

Ov;view Acme Source | ClientServer

&8 properties X Tasks Problems Acme Performance Simulator Yiew Acme Security Simulator View ¥ =0

Rules - Specify Performance Properties
Structure Performance Yalues | Error Handling
Types Response Range (Seconds) System Resources 0
Representations Transaction Complexity | Yery Simple Simple Average Consumed (in %)
Errors Minimum Value | 1.02 1.041 1.06 Mukithreaded [¥] Queue
Source Maximum Value | 1.03 1.05 1.07 Max, Threads: Queue Size:
Visuals

5 | 100
Performance

Specify Performance Properties

Performance Values Error Handling
Error Handling

. . . Errors Selected Parameters Value Error Handling Mechanism
i n Stl tute FOF Cal'neg 1€ Mell()n UmVﬁI'SIty Pracess Crash Successful system trans. (%) | 99 Connect to ancther Thread, Log v

M“

SOFTWARE .
ResearcH | ochool of Computer Scié

Stress testing

* Robustness testing technique: test beyond the limits of normal
operation.
« Can apply at any level of system granularity.

» Stress tests commonly put a greater emphasis on robustness,
availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal

circumstances.

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Soak testing

* Problem: A system may behave exactly as expected under

artificially limited execution conditions.
o E.g., Memory leaks may take longer to lead to failure (also motivates

static/dynamic analysis, but we'll talk about that later).
 Soak testing: testing a system with a significant load over a
significant period of time (positive).
« Used to check reaction of a subject under test under a possible

simulated environment for a given duration and for a given
threshold.

| S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

- institute for | Carnegie Mellon University
| S r SOFTWARE .
ResearcH | ochool of Computer Science

Chaos monkey/Simian army

A Netflix infrastructure testing system.

« "Malicious” programs randomly trample on components, network,
datacenters, AWS instances...
o Chaos monkey was the first — disables production instances at random.

o Other monkeys include Latency Monkey, Doctor Monkey, Conformity
Monkey, etc... Fuzz testing at the infrastructure level.

o Force failure of components to make sure that the system architecture is
resilient to unplanned/random outages.

 Netflix has open-sourced their chaos monkey code.

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

Brief Case Discussion

What qualities are important and
how can you assure them?

. . . .
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

What are we covering?

* Program/system functionality:
o Execution space (white box!).
o Input or requirements space (black box!).

* The expected user experience (usability).
o GUI testing, A/B testing

« The expected performance envelope (performance, reliability,
robustness, integration).
o Security, robustness, fuzz, and infrastructure testing.
o Performance and reliability: soak and stress testing.
o Integration and reliability: APl/protocol testing

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

Testing purposes - 1

M|

institute for
SOFTWARE

RESEARCH

Technique Description

Baseline testing

Load testing .
Scalability .
testing .

Execute a single transaction as a single virtual user for a
set period of time or for a set number of transaction
iterations

Carried out without other activities under otherwise
normal conditions

Establish a point of comparison for further test runs

Test application with target maximum load but typically no
further

Test performance targets (i.e. response time, throughput,
etc.)

Approximation of expected peak application use

Test application with increasing load
Scaling should not require new system or software
redesign

(Carnegie Mellon University
School of Computer Science

Testing purposes - 2

Technique Description
Soak (stability) * Supply load to application continuously for a period
testing of time

* Identify problems that appear over extended period
of time, for example a memory leak

Spike testing e Test system with high load for short duration
* Verify system stability during a burst of concurrent
user and/or system activity to varying degrees of
load over varying time periods

Stress testing * Overwhelm system resources
* Ensure the system fails and recovers gracefully

SOFTWARE
RESEARCH

|Sf institute for | (Carnegie Mellon University

School of Computer Science

Completeness?

Statistical thresholds

o Defects reported/repaired

o Relative proportion of defect kinds
o Predictors on “going gold”

» Coverage criterion
o E.g. 100% coverage required for avionics software
o Distorts the software
o Matrix: Map test cases to requirements use cases

 Can look at historical data

o Within an organization, can compare across projects; Develop expectations and
predictors

o (More difficult across organizations, due to difficulty of commensurability, E.g.,
telecon switches vs. consumer software)

* Rule of thumb: when error detection rate drops (implies diminishing
returns for testing investment).

* Most common: Run out of time or money

SOFTWARE
RESEARCH

institute for | (Carnegie Mellon University

School of Computer Science

