
Chaos Engineering
Building confidence in your application and team

through failure experimentation

Christopher Meiklejohn

October 29, 2020

1

Administrivia

Homework 4B was due Nov 3rd, now the 4th.

Homework 4C was due Nov 5th, now the 6th.

2

Learning Goals

Identify the need for chaos and resilience engineering

Understand the principles of chaos engineering

3

Exercise: Monolithic Application

What kind of failures can happen

here?

How likely is that error to happen?

How do I fix it?

4

Container

PostgreSQL ML Model

Mayan EDMS

Microservice

Process Call

Container

Exercise: Microservice Application

What kind of failures can happen

here?

How likely is that error to happen?

5

Container

PostgreSQL

Mayan EDMS

Microservice

Remote Call

Container

ML Model

Remember, these calls are messages
sent on an unreliable network.

Failures in Microservice Architectures

1. Network may be partitioned

2. Server instance may be down

3. Communication between services may be delayed

4. Server could be overloaded and responses delayed

5. Server could run out of memory or CPU

6

All of these issues
can be indistinguishable

from one another!

Making the calls across the network to
multiple machines makes the

probability that the system is operating
under failure much higher.

These are the problems of
latency and partial failure.

Where Do We Start?

How do we even begin to test these scenarios?

Is there any software that can be used to test these types

of failures?

Let’s look at a few ways companies do this.

7

Game Days

Purposely injecting failures into critical systems in order to:

● Identify flaws and “latent defects”

● Identify subtle dependencies (which may or may not lead to a flaw/defect)

● Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

8

Game Days

Our applications are built on and with “unreliable” components

Failure is inevitable (fraction of percent; at Google scale, ~multiple times)

Goals:

● Preemptively trigger the failure, observe, and fix the error

● Script testing of previous failures and ensure system remains resilient

● Build the necessary relationships between teams before disaster strikes

9

Example: Amazon GameDay

Full data center destruction (Amazon EC2 region)

● No advanced notice of which data center will be taken offline

● No notice of when the data center will be taken offline

● Only advance notice (months) that a GameDay will be happening

● Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for

detecting errors and paging employees was located in the zone of the

failure!

10

Not all failures can be actually
performed and must be simulated!

11

Yes, and the exercise should be designed to make people feel a little
uncomfortable. The truth is that things often break in ways that

people cannot possibly imagine.

John Allspaw
Former CTO
Etsy

I’ve got a crazy story…

Kelly Sommers
Cassandra MVP

Google GameDays

Experiments take roughly 24 – 96 hours:

● 00 - 24h: the initial response, the appearance of the ‘big’ problems.

● 24 – 48h: team to team testing and response, bi-directional testing

● 72 – 96h: exhaustion; part of the test to identify the human response

12

…in a real emergency, you might not have the option of
handing off work at the end of your shift.

Kripa Krishnan
Director, Cloud Ops & Site Reliability Engineering
Google

AWS Outage: April 21, 2011

EC2 outage in us-east-1 (Northern Virginia)

Outage affects:

● Foursquare

● Quora

● Reddit

Outage results in performance problems and in some cases data loss

13

AWS Outage: April 21, 2011

At 12:47 AM PDT on April 21st, a network change was performed as part of our normal AWS

scaling activities in a single Availability Zone in the US East Region. The configuration change was to

upgrade the capacity of the primary network. During the change, one of the standard steps is to shift

traffic off of one of the redundant routers in the primary EBS network to allow the upgrade to

happen. The traffic shift was executed incorrectly and rather than routing the traffic to the

other router on the primary network, the traffic was routed onto the lower capacity

redundant EBS network. For a portion of the EBS cluster in the affected Availability Zone, this

meant that they did not have a functioning primary or secondary network because traffic was

purposely shifted away from the primary network and the secondary network couldn’t handle

the traffic level it was receiving. As a result, many EBS nodes in the affected Availability Zone were

completely isolated from other EBS nodes in its cluster. Unlike a normal network interruption, this

change disconnected both the primary and secondary network simultaneously, leaving the affected

nodes completely isolated from one another.

14

AWS Outage: April 21, 2011

When this network connectivity issue occurred, a large number of EBS nodes in a single EBS cluster

lost connection to their replicas. When the incorrect traffic shift was rolled back and network

connectivity was restored, these nodes rapidly began searching the EBS cluster for available

server space where they could re-mirror data. Once again, in a normally functioning cluster, this

occurs in milliseconds. In this case, because the issue affected such a large number of volumes

concurrently, the free capacity of the EBS cluster was quickly exhausted, leaving many of the

nodes “stuck” in a loop, continuously searching the cluster for free space. This quickly led to a “re-

mirroring storm,” where a large number of volumes were effectively “stuck” while the nodes

searched the cluster for the storage space it needed for its new replica. At this point, about 13%

of the volumes in the affected Availability Zone were in this “stuck” state.

15

16

Cornerstones of Resilence

1. Anticipation: know what to expect

2. Monitoring: know what to look for

3. Response: know what to do

4. Learning: know what just happened

(e.g, postmortems)

17

“[resilient is the] ability to sustain operations before,
during, and after an unexpected disturbance”

Anticipation

18

“[…] get people throughout the organization to start
building their anticipation muscles by thinking about

what might possibly go wrong.”

These experiments form a cycle where developers
begin to anticipate what might possibly go wrong

during development, which adds to the overall
resilience of the system.

Response: Etsy’s Substitution Test

Developer runs command that brings down the site

● Grab another engineer who had no involvement in the incident

● Explain the context of the problem

● Fill developer in on the details known by the developer at the time

● Ask what they would do

Developer says they would run the same command almost every time

Identify the reasons for why this seemed the right decision at the time

19

Some Example Google Issues

Terminate network in Sao Paulo for testing:

● Hidden dependency takes down links in Mexico which would have

remained undiscovered without testing

Turn of data center to find that machines won’t come back:

● Ran out of DHCP leases (for IP address allocation) when a large number of

machines come back online unexpectedly.

20

Complexities are introduced as new capabilities are developed. […]
It gets progressively harder to see where our dependencies are

and what might lead to cascading failures.

Netflix: Background

Started as a DVD-by-mail business because Reed Hastings was

annoyed with Blockbuster late fees

Problem: when new movies come out, there’s only hundreds of DVDs to

service multiple thousands of demand

Stream movies instead of purchasing and mailing DVDs out to customers

Problem: must purchase enough compute to handle peaks (7pm+

weekends) vs valleys (noon, weekday)

21

Netflix: Cloud Computing

Significant deployment in Amazon Web Services in order to remain

elastic in times of high and low load (first public, 100% w/o content delivery.)

Pushes code into production and modifies runtime configuration

hundreds of times a day

Key metric: availability

22

a customer who can’t watch a video because of a service
outrage might not be a customer for long.

“Chaos Engineering”
Basiri et al., IEEE Software 2016

Chaos Engineering: The History
Experimentation to build confidence around a system to withstand

turbulent conditions in production

Netflix’s Simian Army

● (the original) Chaos Monkey:

Randomly terminates EC2 instances in production

● Chaos Kong:

Simulates the failure of an entire EC2 region in AWS

● Latency Monkey:

Injects latency to simulate overload of service and ensures upstream

services react appropriately

23

Chaos Monkey has proven successful; today all Netflix
engineers design their services to handle instance failures

as a matter of course.

Have Chaos Monkey crash development instances, too!

Netflix UI: AppBoot

24

My List RecommendationsRatingsUser ProfilesBookmarks

AppBoot

Microservice

Remote Call

What happens if the bookmark
service is down?

Search

Principles of Chaos Engineering

1. Build a hypothesis around steady state behavior

2. Vary real-world events

experimental events, crashes, etc.

3. Run experiments in production

control group vs. experimental group

draw conclusions, invalidate hypothesis

4. Automate experiments to run continuously

25

Are users complaining?

Does everything seem to be
working properly?

However, “works properly” is too vague a basis for
designing experiments.

Graceful Degradation: Anticipating Failure

Allow the system to degrade in a way it’s still usable

Fallbacks:

● Cache miss due to failure of cache;

● Go to the bookmarks service and use value at possible latency penalty

Personalized content, use a reasonable default instead:

● What happens if recommendations are unavailable?

● What happens if bookmarks are unavailable?

26

…default to starting videos at the beginning rather than
providing a “resume from previous location” option.

Steady State Behavior

Back to quality attributes: availability!

27

Ultimately, what we care about is whether users can find
content to watch and successfully watch it.

SPS is the
primary indicator

of the system’s
overall health.

Netflix UI: AppBoot

28

My List RecommendationsRatingsUser ProfilesBookmarks

AppBoot

Microservice

Remote Call

What happens if the bookmark
service is down?

Search

AppBoot: Bookmarks Down Scenario (Imaginary)

SPS as core metric.

Experiment 1:

Outage of bookmarks service causes UI to fail to load, SPS decreases. Code

fixed to hide bookmarks if call fails.

Experiment 2:

Outage of bookmarks service hides booksmarks on UI, SPS stays normal.

29

Exercise: Quality Attributes

1. What would a quality attribute be for an e-commerce website to

characterize the stead-state behavior of the system?

2. What would a quality attribute be for an advertisement platform to

characterize the stead-state behavior of the system?

3. What would a quality attribute be for an admissions system to

characterize the stead-state behavior of the system?

30

Making Hypotheses

No trivial hypotheses

● Overloading the system will increase the CPU, etc.

● Hypothesis should be made w.r.t overall system health metric

Monitor finer-grained metrics

● Monitor the CPU, other resources

● Indicators of degraded mode operation, etc.

● Use alerting to identify these issues to catch them early and anticipate

31

Varying Real-World Events

1. Clients send malformed requests

2. Servers may send malformed responses

3. Servers die

4. Hard disks fill up

5. Memory is exhausted

6. CPU is overloaded

7. Latencies spike

8. Load from clients can spike

32

A recent study reported that 92% of catastrophic system
failures resulted from incorrect handling of nonfatal errors.

Sampling of Netflix’s Candidate Faults

1. Terminate virtual machine instances

2. Inject latency into requests between different services

3. Fail requests between services

4. Fail an entire service

5. Make an entire Amazon region unavailable

33

Two Example Netflix Errors

1. Server is overloaded and takes longer and longer to respond

Clients requests are placed in a queue to be serviced

Local queue becomes exhausted, run out of memory

Client service crash

2. Client makes a request to a server that uses a cache

Error (transient) is returned to the client

Server caches the error

Future clients read the cached error value

34

Chaos Engineering as Continuous Process

35

Because of these changes, our confidence in past experiments’
results decreases over time.

Our system at Netflix changes continuously.

Chaos Monkey runs continuously during weekdays, and we
run Chaos Kong exercises monthly. (2016)

Netflix Today: CHaP

36

Automatic experimentation

and failure injection with

FIT

Automatic instrumentation

of key performance metrics

Automatic termination

based on key metrics

Automatic experiment design with Monocle

reference: https://www.youtube.com/watch?v=3WRVgC8SiGc

How to run a Chaos Experiment
1. Define steady-state as some measurable output of a system that

indicates normal behavior

2. Hypothesize that this steady state will continue in both the control group

and experimental group

3. Introduce variables that reflect real-world events such server crashes,

hard drives malfunctioning, and network connections being severed

4. Try to disprove the hypothesis by looking for a difference in steady state

between the control group and the experimental group.

37

