Chaos Engineering

Building confidence in your application and team
through failure experimentation

Christopher Meiklejohn

October 29, 2020

institute for Carnegie Mellon University
SOFTWARE : .
RESEARCH School of Computer Science

Administrivia

Homework 4B was due Nov 39 now the 4th,

Homework 4C was due Nov 51", now the 6th,

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Learning Goals

Identify the need for chaos and resilience engineering

Understand the principles of chaos engineering

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Exercise: Monolithic Application

What kind of failures can happen
here?

PostgreSQL ML Model

How likely is that error to happen?

How do | fix it?

Mayan EDMS

—» Process Call

. . Microservice
Container

0 . . P
nstitute for Carnegie Mellon University

SOFTWARE ~ —~ =
[Ei RESEARCH School of Computer Science

Exercise: Microservice Application

What kind of failures can happen

Mayan EDMS

Container Remember, these calls are messages
sent on an unreliable network.

PostgreSQL ML Model

—» Remote Call

Container Container . Microservice

m LA Carnegie Mellon University
SOFTWARE - _
RESEARCH School of Computer Science

Failures in Microservice Architectures

. All of these issues
1. Network may be partitioned can be indistinguishable
from one another!

2. Server instance may be down

Making the calls across the network to
multiple machines makes the

3. Communication between services may i eEelsEle s AT EIRT RS =l WERe] ol TE [t
under failure much higher.

4. Server could be overloaded and respo
These are the problems of
latency and partial failure.

5. Server could run out of memory or CP

institute for Carnegie Mellon University
SOFTWARE c
S RESEARCH School of Computer Science

Where Do We Start?

How do we even begin to test these scenarios?

Is there any software that can be used to test these types
of failures?

Let's look at a few ways companies do this.

Carnegie Mellon University

School of Computer Science

aCmQUBLe ¢

Game Days

Purposely injecting failures into critical systems in order to:

e |dentify flaws and “latent defects”
e |dentify subtle dependencies (which may or may not lead to a flaw/defect)
e Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

acmqueLe

Game Days

Our applications are built on and with “unreliable” components
Failure is inevitable (fraction of percent; at Google scale, ~multiple times)
Goals:

e Preemptively trigger the failure, observe, and fix the error

e Script testing of previous failures and ensure system remains resilient
e Build the necessary relationships between teams before disaster strikes

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

— et
aCmgueue =

S —

Example: Amazon GameDay

Full data center destruction (Amazon EC2 region)

Not all failures can be actually ta Ce_nter will be tak'en offline

o I e N LRI UL e r will be taken offline

at a GameDay will be happening
e Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for
detecting errors and paging employees was located in the zone of the
failure!

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

dcmoueue

Yes, and the exercise should be designed to make people feel a little
uncomfortable. The truth is that things often break in ways that

people cannot possibly imagine.

John Allspaw
Former CTO I've got a crazy story...
Etsy

Kelly Sommers
Cassandra MVP

institute for Carnegie Mellon University
SOFTWARE c
S RESEARCH School of Computer Science

Google GameDays

Experiments take roughly 24 - 96 hours:

e 00 - 24h: the initial response, the appearance of the ‘big’ problems.
e 24 -48h: team to team testing and response, bi-directional testing
e 72 -96h: exhaustion; part of the test to identify the human response

...in a real emergency, you might not have the option of

handing off work at the end of your shift.

Kripa Krishnan
Director, Cloud Ops & Site Reliability Engineering
Google

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

AWS Outage: April 21, 2011

EC2 outage in us-east-1 (Northern Virginia)
Outage affects:
e Foursquare

e Quora
e Reddit

Outage results in performance problems and in some cases data loss

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

AWS Outage: April 21, 2011

At 12:47 AM PDT on April 21st, a network change was performed as part of our normal AWS
scaling activities in a single Availability Zone in the US East Region. The configuration change was to
upgrade the capacity of the primary network. During the change, one of the standard steps is to shift
traffic off of one of the redundant routers in the primary EBS network to allow the upgrade to
happen. The traffic shift was executed incorrectly and rather than routing the traffic to the
other router on the primary network, the traffic was routed onto the lower capacity
redundant EBS network. For a portion of the EBS cluster in the affected Availability Zone, this
meant that they did not have a functioning primary or secondary network because traffic was
purposely shifted away from the primary network and the secondary network couldn’t handle
the traffic level it was receiving. As a result, many EBS nodes in the affected Availability Zone were
completely isolated from other EBS nodes in its cluster. Unlike a normal network interruption, this
change disconnected both the primary and secondary network simultaneously, leaving the affected
nodes completely isolated from one another.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

AWS Outage: April 21, 2011

When this network connectivity issue occurred, a large number of EBS nodes in a single EBS cluster
lost connection to their replicas. When the incorrect traffic shift was rolled back and network
connectivity was restored, these nodes rapidly began searching the EBS cluster for available

server space where they could re-mirror data. Once again, in a normally functioning cluster, this

occurs in milliseconds. In this case, because the issue affected such a large number of volumes
concurrently, the free capacity of the EBS cluster was quickly exhausted, leaving many of the
nodes “stuck” in a loop, continuously searching the cluster for free space. This quickly led to a “re-
mirroring storm,” where a large number of volumes were effectively “stuck” while the nodes
searched the cluster for the storage space it needed for its new replica. At this point, about 13%
of the volumes in the affected Availability Zone were in this “stuck” state.

» i S
Carnegie Mellon University

institute for
SOFTWARE c
RESEARCH School of Computer Science

Primary Outage

At12:47 AM PDT on April 21st, a network change was performed as part of our normal AWS scaling activities in a single Availability Zone in the US East Region. The configuration change
wasto upgrade the capacity of the primary network. During the change, one of the standard steps is to shift traffic off of one of the redundant routers in the primary EBS network to
allow the upgrade to happen. The traffic shift was executed incorrectly and rather than routing the traffic to the other router on the primary network, the traffic was routed onto the
lower capacity redundant EBS network. For a portion
because traffic was purposely shifted away from the §
affected Availability Zone were completely isolated fr

network simultaneously, leaving the affected nodes «

When this network connectivity issue occurred, a larg)
network connectivity was restored, these nodes rapid
cluster, this occurs in milliseconds. In this case, becaus
many of the nodes “stuck” in a loop, continuously seal
while the nodes searched the cluster for the storage s

After the initial sequence of events described above,
entered the re-mirroring storm and exhausted its avai
volume AP! in particular) was configured with a long
plane has a regional pool of available threads it can u
had no ability to service API requests and began to fa

disabled all new Create Volume requests in the affect|

Two factors caused tha situation in this EBS cluster to
when they could not find space, but instead, continue
to fail when they were concurrently closing a large nu
however, during this re-mirroring storm, the volume ¢
bug, resulting in more volumes left needing to re-mir|

By 5:30 AM PDT, error rates and latencies again increa
EC2 instance, the EBS nodes with the volume data, an
replica and recognized by the EC2 instance as the plat
of the race condition described above, the volume of |
calls increased as the system retried and new request!
team began disabling all communication between the
affected Availability Zone (we will discuss recovery of

Alarge majority of the volumes in the degraded EBS {
team developed a way to prevent EBS servers in the d

other essential communication between nodes in the
becoming “stuck”. Before this change was deployed, t
becoming “stuck”. However, volumes were also slowly \
that when this change was deployed, the total *stuck!

Customers also experienced elevated error rates until

Recovering EBS in the Affected Availability Zone

By 12:04 PM PDT on April 21st, the outage was contained to the ane affected Availability Zone and the degraded EBS cluster was stabilized. APIs were working well for all other
Availability Zones and additional volumes were no longer becoming “stuck”. Our focus shifted to completing the recovery. Approximately 13% of the volumes in the Availability Zone
remained “stuck” and the EBS APIs were disabled in that one affected Availability Zone. The key priority became bringing additional storage capacity online to allow the “stuck” volumes
to find enough space to create new replicas.

ot reuse the failed node until every data replica is successfully re-

tid not want to re-purpose this failed capacity until we were sure we
acity to replace that capacity in the cluster. This required the time-
apacity into the degraded EBS cluster. Second, because of the
&d the cluster in the step described above), the team had difficulty
 to allow negotiation to occur with the newly-built servers without
' . as the team had to navigate a number of issues as they worked
lificant amounts of new capacity and working through the replication
Ffacted Availability Zone were restored by 12:30PM PDT on April
pective of the attached EC2 instances because some were blocked

nce and elect a new writable copy.

ess to the affected Availability Zone and restoring access to the
raded EBS nodes to the EBS control plane and vice versa. This effort
AP access online to the impacted Availability Zone centered on
instance of the EBS control plane, one we could keep partitioned to
log. We rapidly developed throttles that turned out to be too coarse-
the morning of April 23rd, we worked on developing finer-grain
s. Initial tests of traffic against the EBS control plane demonstrated
finished enabling access to the EBS control plane to the degraded
egotiate which replica would be writable, to once again be usable
Availability Zone.

nes in the Region. The recovery of the remaining 2.2% of affected
the event as an extra precaution against data loss while the event
and began processing batches through the night. At 12:30 PM PDT
ected volumes. At this point, the team began forensics on the

0 PM PDT, the team began restoring these. Ultimately, 0.07% of the

'RDS"). RDS depends upon EBS for database and log storage, and as

nultiple Availability Zones (“multi-AZ"). Single-AZ database instances
d if one of the EBS volumes it was relying on got “stuck”. In the
elatively-bigger portion of the RDS population than the

ases aggregate |/O capacity for database workloads under normal

L the volume is restored. The percentage of “stuck” single-AZ

d. The percentage of “stuck” single-AZ database instances in the
hours, and the rest recovered throughout the weekend. Though we
ity Zone had an underlying EBS storage velume that was not

zone. This occurred for approximately 11 hours, from

option to initiate point-in-time database restore operations.

were able to create EBS-backed EC2 instances but were experiencing significantly-elevated error rates and latencies. New EBS-backed EC2 launches were being affected by a specific API
in the EBS control plane that is only needed for attaching new instances to volumes. Initially, our alarming was not fine-grained enough for this EBS control plane APl and the launch
errors were overshadowed by the general error from the degraded EBS cluster. At 11:30 AM PDT, a change to the EBS control plane fixed this issue and latencies and error rates for new
EBS-backed EC2 instances declined rapidly and returned to near-normal at Noon PDT.

OF TWARE - .
RESEARCH School of Computer Science

I S institute fo Carnegie Mellon Univ
S

RDS multi-AZ deployments provide redundancy by synchronously replicating data between two database replicas in different Availability Zones. In the event of a failure on the primary
replica, RDS is designed to automatically detect the disruption and fail over to the secondary replica. O multi-AZ database instances in the US East Region, 2.5% did not automatically
failover after experiencing “stuck” 1/0. The primary cause was that the rapid succession of network interruption (which partitioned the primary from the secondary) and “stuck” 1/0 on the
primary replica triggered a previously un-encountered bug. This bug left the primary replica in an isolated state where it was not safe for our monitoring agent to automatically fail over
to the secondary replica without risking data loss, and manual intervention was required. We are actively working on a fix to resolve this issue.

Cornerstones of Resilence

“[resilient is the] ability to sustain operations before,

during, and after an unexpected disturbance”

1. Anticipation: know what to expect
2. Monitoring: know what to look for
3. Response: know what to do

4. Learning: know what just happened
(e.g, postmortems)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

T
dcmoueue

Anticipation

“[...] get people throughout the organization to start
building their anticipation muscles by thinking about

what might possibly go wrong.”

These experiments form a cycle where developers
begin to anticipate what might possibly go wrong
during development, which adds to the overall
resilience of the system.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Response: Etsy's Substitution Test

Developer runs command that brings down the site

Grab another engineer who had no involvement in the incident
Explain the context of the problem

Fill developer in on the details known by the developer at the time
Ask what they would do

Developer says they would run the same command almost every time

Identify the reasons for why this seemed the right decision at the time

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

T
dcmoueue

Some Example Google Issues

Terminate network in Sao Paulo for testing:
e Hidden dependency takes down links in Mexico which would have

remained undiscovered without testing

Turn of data center to find that machines won’t come back;
e Ran out of DHCP leases (for IP address allocation) when a large number of

machines come back online unexpectedly.

Complexities are introduced as new capabilities are developed. [...]
It gets progressively harder to see where our dependencies are
and what might lead to cascading failures.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

: E
[=]
@

Netflix: Background

Started as a DVD-by-mail business because Reed Hastings was
annoyed with Blockbuster late fees

Problem: when new movies come out, there’s only hundreds of DVDs to
service multiple thousands of demand

Stream movies instead of purchasing and mailing DVDs out to customers

Problem: must purchase enough compute to handle peaks (7pm+
weekends) vs valleys (noon, weekday)

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Netflix: Cloud Computing

Significant deployment in Amazon Web Services in order to remain
elastic in times of high and low load (first public, 100% w/o content delivery.)

Pushes code into production and modifies runtime configuration

hundreds of times a day

a customer who can't watch a video because of a service
outrage might not be a customer for long.

Key metric: availability

“Chaos Engineering”
_ Basiriet al., IEEE Software 2016

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Chaos Engineering: The History

Experimentation to build confidence around a system to withstand
turbulent conditions in pre Chaos Monkey has proven successful; today all Netflix
engineers design their services to handle instance failures

NetﬂiX'S Simian Army as a matter of course.
e (the original) Chaos Monkey:
Randomly terminates EC2 instances in production
e Chaos Kong:
Simulates the failure of an entire EC2 region in AWS
e Latency Monkey:
Injects latency to simulz
services react appropriately

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Netflix Ul: AppBoot

What happens if the bookmark
service is down?

Bookmarks User Profiles Recommendations

—» Remote Call

. Microservice

nstitute for
m SOFTWARE
RESEARCH

Principles of Chaos Engineering

1. Build a hypothesis around steady state behavior

Does everything seem to be
working properly?

Are users complaining?
draw game

However, “works properly” is too vague a basis for
designing experiments.

2. Vary real-world events
experimental events, crashes, etc.

3. Run experiments in production
control group vs. experimental group

4. Auto

- institute for Carnegie Mellon University
SOFTWARE c
1S RESEARCH School of Computer Science

Graceful Degradation: Anticipating Failure

Allow the system to degrade in a way it's still usable

Fallbacks:
e Cache miss due to failure of cache;
e Go to the bookmarks service and use value at possible latency penalty

Personalized content, use a reasonable default instead:
e What happens if recommendations are unavailable?
e What happens if bookmarks are unavailable?

...default to starting videos at the beginning rather than
providing a “resume from previous location” option.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Chaos
Engineering

Steady State Behavior

Back to quality attributes: availability!

SPS is the
primary indicator
of the system'’s 1730 20115 23:00 01:45 0430 0715 10:00 12:45 15:00
overall health. Time

FIGURE 2. A graph of SPS ([stream)] starts per second) over a 24-hour period. This

metric yares slon =lale Hale=Tn = rouahcud 8 s he arann= hne shoe e fren

Ultimately, what we care about is whether users can find
content to watch and successfully watch it.

institute for Carnegie Mellon University
SOFTWARE c
S RESEARCH School of Computer Science

Netflix Ul: AppBoot

What happens if the bookmark
service is down?

Bookmarks User Profiles Recommendations

—» Remote Call

. Microservice

nstitute for
m SOFTWARE
RESEARCH

AppBoot: Bookmarks Down Scenario (Imaginary)

SPS as core metric.

Experiment 1:

Outage of bookmarks service causes Ul to fail to load, SPS decreases. Code
fixed to hide bookmarks if call fails.

Experiment 2:
Outage of bookmarks service hides booksmarks on Ul, SPS stays normal.

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

| o= oo
aos

Exercise: Quality Attributes

1. What would a quality attribute be for an e-commerce website to
characterize the stead-state behavior of the system?

2. What would a quality attribute be for an advertisement platform to
characterize the stead-state behavior of the system?

3. What would a quality attribute be for an admissions system to
characterize the stead-state behavior of the system?

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

| o= oo
aos

Making Hypotheses

No trivial hypotheses
e Overloading the system will increase the CPU, etc.
e Hypothesis should be made w.r.t overall system health metric

Monitor finer-grained metrics

e Monitor the CPU, other resources

e Indicators of degraded mode operation, etc.

e Use alerting to identify these issues to catch them early and anticipate

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Varying Real-World Events

Clients send malformed requests
Servers may send malformed responses
Servers die

Hard disks fill up

Memory is exhausted

CPU is overloaded

Latencies spike

Load from clients can spike

O NOULhRWDN =

A recent study reported that 92% of catastrophic system
failures resulted from incorrect handling of nonfatal errors.

institute for Carnegie Mellon University
SOFTWARE c
S RESEARCH School of Computer Science

Sampling of Netflix's Candidate Faults

1. Terminate virtual machine instances

2. Inject latency into requests between different services
3. Fail requests between services

4. Fail an entire service

5. Make an entire Amazon region unavailable

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Two Example Netflix Errors

1. Server is overloaded and takes longer and longer to respond
Clients requests are placed in a queue to be serviced
Local queue becomes exhausted, run out of memory
Client service crash

2. Client makes a request to a server that uses a cache
Error (transient) is returned to the client
Server caches the error
Future clients read the cached error value

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Chaos
Engineering

Chaos Engineering as Continuous Process

Our system at Netflix changes continuously.

Because of these changes, our confidence in past experiments’
results decreases over time.

Chaos Monkey runs continuously during weekdays, and we
run Chaos Kong exercises monthly. (2016)

institute for Carnegie Mellon University
SOFTWARE c
S RESEARCH School of Computer Science

Netflix Today: CHaP

PS e B igerent B L~
o[' SHORTED
}) T up ww we wx we wo we we L i W2 ww un wx us we we we 10'77 18'” 10‘33 w'x 10'13 10“2 1"45 lﬂlll
ChAP - How does it work? NETFL'X . —— NETFLIX
i
Automatic experimentation Automatic instrumentation Automatic termination
and failure injection with of key performance metrics based on key metrics
FIT

Automatic experiment design with Monocle

reference: https://www.youtube.com/watch?v=3WRVgC8SiGc

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

How to run a Chaos Experiment

1. Define steady-state as some measurable output of a system that
indicates normal behavior

2. Hypothesize that this steady state will continue in both the control group
and experimental group

3. Introduce variables that reflect real-world events such server crashes,
hard drives malfunctioning, and network connections being severed

4. Try to disprove the hypothesis by looking for a difference in steady state
between the control group and the experimental group.

" institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

