Static Analysis — Part 1

Claire Le Goues

0
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Learning goals

* Give a one sentence definition of static analysis. Explain what types of
bugs static analysis targets.

e Give an example of syntactic or structural static analysis.
e Construct basic control flow graphs for small examples by hand.

* Distinguish between control- and data-flow analyses; define and then
step through on code examples simple control and data-flow analyses.

* Implement a dataflow analysis.

e Explain at a high level why static analyses cannot be sound, complete,
and terminating; assess tradeoffs in analysis design.

e Characterize and choose between tools that perform static analyses.

SOFTWARE
RESEARCH

institute for | (Carnegie Mellon University

School of Computer Science

Two fundamental concepts

e Abstraction.
o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

* Programs as data.
o Programs are just trees/graphs!
o ..and we know lots of ways to analyze trees/graphs, right?

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

goto fail;

SOFTWARE .
ResearcH | ochool of Computer Science

S r institute for (Carnegie Mellon University

1. static OSStatus
2. SSLVerifySignedServerKeyExchange (SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4. uint8 t *signature,

5. UIntl6 signaturelLen) {

6. OSStatus err;

7.

8. if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
9. goto fail;

10. if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15.

16.fail:

17. SSLFreeBuffer (&signedHashes);

18. SSLFreeBuffer (&hashCtx);

19. return err;

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4. int b size) {
5. struct buffer head *bh;

6. unsigned long flags;
7
8

ERROR: function returns with
. save flags(flags); interrupts disabled!

. cli(); // disables interrupts
9. 1if ((bh = sh->buffer
10. return NULL;

11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;

1 5. } With thanks to Jonathan Aldrich; example from Engler et
al., Checking system rules Using System-Specific,
Programmer-Written Compiler Extensions, OSDI ‘000

Could you have found them?

* How often would those bugs trigger?
* Driver bug:

o What happens if you return from a driver with interrupts disabled?
o Consider: that’s one function

= ..ina 2000 LOC file

= ..ina module with 60,000 LOC

= _.IN THE LINUX KERNEL

* Moral: Some defects are very difficult to find via testing, inspection.

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

CNET » News » Security & Privacy » Klocwork: Our source code analyzer caught Apple's '...
Featured Posts

Klocwork: Our source code
analyzer caught Apple's
'gotofail' bug

If Apple had used a third-party source code analyzer on its encryption
library, it could have avoided the "gotofail" bug.

Motorol;

powere(
Internet (

0K, Glat
inmy fa
Cutting E

bl

Apple if

by Declan McCullagh | February 28,2014 1:13 PM PST PRy product
- E Apple
¥ Follow

S iPad wit
comeba

K3 s o = Y =2 39 s More + Comments ~ 25 Apple

=

(|
|
|

- UNEZALM GEN (Warmngl More shermaton
» N SecwreTranspon s wnread
» 6 secoretrampsnte o (o0 ¢ if ((err = ReadyMosh(8SSLHashSHAL, Bhash(tx)) !« @) Cade Is hatie.
>N 2 . 624 goto fall; o Tracedack
. poommteasasbrbier ¢ if (Cerr = SSUHoshSHAL. update(Bhash(tx, &clientRandon)) 1= @) ¥ © fisens edelsten werkssace jeax- 109 Most Popular
» (5 ssih ¢ goto fail; O ey Eucharge < 612 The code is |
» (& asi3Catouts.c 62 if ((err = SSLMoshSHAL.update(Bhash(tx, &serverfandam)) = @) *
> ot s ooto falls] Giant 3[
> B setlerttesmpah if (g:: ;atﬁpm.m(e{mu_ &signedfarans)) != @) o house
{ . goto ’Q‘HS—" Apple, we need to talk 6k Facel
> (8 wBstdriags h 0 637 (Cade s snveuchusie . final (BhashCtx, BhashOut)) 1= @) -
> [ssCenc /] goto fail; Carrest staten: Analyze
» & whamgeCipher.c e
» (4 siCipherSpecs.c ¢ err = sslRoweri fy(ctx, Exclusiv
L mwcsmneat Static code analysis wins! Ctx->peerbkey, «
> [@ ssXonentc Doeschi
> i wComen pr—- e ,
> (4 ssiCryproc oCwor! Wocwerk " 5 . y B
> Qs 716 Twe
» [50 b Finer manched | of 4 ssues. Crouped by Dreciery, sorted by Destription, then by Resource.
» (& swOigestrc Oescroton Tancosemy Rescurce Locaton Sevenity
» (N s50gestsh ¥ 5 JUsens/iedelsten/workipace /eax- 10 9/5acurity- 55471 1secenty_mi/d Googlel
> (2 ssttandshahec © UNREACH.CEN: Code i usreachable CandCos sslteyExchanges 2 warni ()
4 = four can
» (& sstandsharetelio ¢ . 771 Goc
> (@ sercrmnc -
» N ssKeychainh
» e ssieyEachange ¢
Writable Seantiasent 632:60 ®
Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's Connect With CNET
product would have nabbed the "goto fail" bug.
Credit: Klocwork
() Facebook
Like Us

It was a single repeated line of code -- "goto fail" -- that left millions of Apple users
0 vulnerable to Internet attacks until the company finally fixed it Tuesday.

| STt institte For arregic Melion University

SOFTWARE

ResearcH | ochool of Computer Science

Defects of interest...

* Are on uncommon or difficult-to-force execution paths. (vs testing)

» Executing (or interpreting/otherwise analyzing) all paths concretely to
find such defects is infeasible.

 What we really want to do is check the entire possible state space of the
program for particular properties.

institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Defects Static Analysis can Catch

* Defects that result from inconsistently following simple, mechanical
design rules.

Security: Buffer overruns, improperly validated input.

Memory safety: Null dereference, uninitialized data.

Resource leaks: Memory, OS resources.

API Protocols: Device drivers; real time libraries; GUI frameworks.

Exceptions: Arithmetic/library/user-defined

Encapsulation: Accessing internal data, calling private functions.

O O O O O O O

Data races: Two threads access the same data without synchronization

Key: check compliance to simple, mechanical design rules

SOFTWARE
RESEARCH

institute for | (Carnegie Mellon University

School of Computer Science

C & github. p

Marketplace ~ Search results

Types

Apps

Actions

Categories

API management
Chat
Code review
Continuous integration
Dependency management
Deployment
IDEs
Learning
Localization
Mobile
Monitoring
Project management
Publishing
Recently added
Security
Support
Testing

Utilities

Filters v

Verification

Verified

Unverified

Your items

Purchases

Pull requests Issues Marketplace Explore

Q

Code quality

Automate your code review with style, quality, security, and test-coverage checks when you need them.

245 results filtered by ~ Code quality | x

CodeScene &

€S The analysis tool to identify and prioritize
technical debt and evaluate your
organizational efficiency

CodeFactor &
Automated code review for GitHub

DeepScan &

finding runtime errors in JavaScript code

Datree &
Policy enforcement solution for confident
and compliant code

DeepSource &
Discover bug risks, anti-patterns and

in production. For Python and Go

Codecov &
Group, merge and compare coverage
reports

Codacy &
Automated code reviews to help
developers ship better software, faster

Code Climate &

and test coverage

Sider &

custom per-project rulesets and best
practices

codelingo
Your Code, Your Rules - Automate code
reviews with your own best practices

c Q000 v ® O -

Also recommended for you

security vulnerabilities before they end up Debt evaluation made easy

Automated code review for technical debt

Automatically analyze pull request against

TestQuality &
SA Modern, powerful, test plan management

Restyled.io &
(-] Restyle Pull Requests as they're opened

LGTM &

Advanced static analysis for automatically Find and prevent zero-days and other

critical bugs, with customizable alerts and
automated code review

Lucidchart Connector &

Insert a public link to a Lucidchart diagram

so team members can quickly understand

an issue or pull request |

« Code Inspector &
c | code uality, Code Reviews and Technical

codebeat &
Code review expert on demand.
Automated for mobile and web

©

Better Code Hub &
A Benchmarked Definition of Done for
Code Quality

D

Coveralls & |
W Ensure that new code s fully covered, and

see coverage trends emerge. Works with

any Cl service

Imgbot &
A GitHub app that optimizes your images

Check TODO
Checks for any added or modified TODO
items in a Pull Request

Next

https://github.com/marketplace?category=code-quality

11

https://github.com/marketplace?category=code-quality

package com.google.devtools.staticanalysis;

public class Test {

~ Lint Missing a Javadoc comment.
Ja
1:02 AM, Aug 21
Please fix Not useful
public boolean foo() {
return getString() == "foo".toString();
~ ErrorProne String comparison using reference equality instead of value equality
Junotauetty | (see hitp://code.google.com/plerror-prone/wiki/StringEquality)
1:03 AM, Aug 21
Please fix
Suggested fix attached: show Not useful

}

public String getString() {
return new String(“foo");
}
}

/ldepot/google3/javaicom/googie/devtoois/staticanalysis/ | est.java

package com.google.devtools.staticanalysis;

public class Test {
public boolean foo() {
return getString() == "foo".toString();

}

public String getString() {
return new String("foo");
}
}

R oo

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {

return Objects.equals(getString(), "foo".toString());

}

public String getString() {
return new String("foo");
}
}

(c) 2020 C. Le Goues

12

facebook Engineering

Open Source Platforms Infrastructure Systems Physical Infrastructure

POSTED ON MAY 2, 2018 TO DEVELOPER TOOLS, OPEN SOURCE

Sapienz: Intelligent automated software testing at
scale

e

sapienz

2\)
By Ke Mao | f | |] |
N AN

Sapienz technology leverages automated test design to
make the testing process faster, more comprehensive, and

more effective.

Video Engineerin

facebook Engineering

Open Source Platforms Infrastructure Systems Physical Infrastructure

POSTED ON SEP 13, 2018 TO Al RESEARCH, DEVELOPER TOOLS, OPEN SOURCE, PRODUCTION ENGINEERING

Finding and fixing software bugs automatically with

SapFix and Sapienz

@ save

Workflow (Generation)

‘ Crp) ‘ Triggers Q "7

Saplenz. Trigger Patch Fix Patch Validated
Auto Triage Genorator Generator Ravision

I S— !
wi | | o | [veome | [|

By YueJia KeMao Mark Harman

Debugging code is drudgery. But SapFix, a new Al hybrid tool created by Facebook
engineers, can significantly reduce the amount of time engineers spend on debugging,
while also speeding up the process of rolling out new software. SapFix can automatically
generate fixes for specific bugs, and then propose them to engineers for approval and
deployment to production.

SapFix has been used to accelerate the process of shipping robust, stable code updates to
millions of devices using the Facebook Android app — the first such use of Al-powered
testing and debugging tools in production at this scale. We intend to share SapFix with
the engineering community, as it is the next step in the evolution of automating
debugging, with the potential to boost the production and stability of new code for a
wide range of companies and research organizations.

SapFix is designed to operate as an independent tool, able to run either with or without
Sapienz, Facebook’s intelligent automated software testing tool, which was announced at
F8 and has already been deployed to production. In its current, proof-of-concept state,
SapFix is focused on fixing bugs found by Sapienz before they reach production. The

(c) 2020 C. Le Goues

®

Video Engineering & ARIVR

13

DEFINING STATIC ANALYSIS

. . . .
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

What is Static Analysis?

» Systematic examination of an abstraction of program state space.
o Does not execute code! (like code review)

* Abstraction: produce a representation of a program that is simpler to
analyze.
o Results in fewer states to explore; makes difficult problems tractable.

e Check if a particular property holds over the entire state space:

o Liveness: “something good eventually happens.”
o Safety: “this bad thing can’t ever happen.”
o Compliance with mechanical design rules.

RESEARCH

institute for |~ Carnegie Mellon University
| S r SOFTWARE

School of Computer Science

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

Every static analysis is necessarily incomplete or unsound or
undecidable (or multiple of these)

. . . .
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

SIMPLE SYNTACTIC AND STRUCTURAL ANALYSES

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Type Analysis

E public void| foo() {

Eé int a = computeSomething();
E; if (a == "5")

. doMoreStuff():

SOFTWARE .
ResearcH | ochool of Computer Science

S r institute for (Carnegie Mellon University

Abstraction: abstract syntax tree

* Tree representation of the Example:5+ (2 + 3)
syntactic structure of source
code.
o Parsers convert concrete syntax +

into abstract syntax, and deal with /\
resulting ambiguities.
* Records only the semantically 5 +
relevant information.
o Abstract: doesn’t represent every A
detail (like parentheses); these can
be inferred from the structure.

 (How to build one? Take
compilers!)

RESEARCH

institute for |~ Carnegie Mellon University
| S r SOFTWARE

School of Computer Science

Type checking

_—

class X

class X {
Logger logger;
public bid foo() {

if (1pgger.inDebug()) {
logger.debug(“We have 7 +
conn + “connections.”);

}

}

}
class Logger {

boolean 'nDegug() {..}
void debug(String msg) {..}

LSRN Researci | School of Computer Science

field method
logger foo
Logger _—
if stmt
expects boolean
— B
method block
invoc.
__boofean. \
logger inDebug method
Logger ->boolean invoc.,
logger debug parameter
| Logger .-String
String -> void

Syntactic Analysis

Find every occurrence of this pattern:

public foo() {

}

logger.debug(“We have ” + conn + “connections.”);

public foo() {

if (logger.inDebug()) {
logger.debug(“We have

}

}

" + conn + “connections.”);

grep "if \(logger\.inDebug" . -r

|Sf institute for | Carnegie Mellon University

SOFTWARE

ResearcH | ochool of Computer Science

Abstract syntax tree walker

* Check that we don’t create strings outside of a
Logger .inDebug check

e Abstraction:
o Look only for calls to Logger .debug()
o Make sure they’re all surrounded by if (Logger.inDebug())

e Systematic: Checks all the code

 Known as an Abstract Syntax Tree (AST) walker
o Treats the code as a structured tree
o lgnores control flow, variable values, and the heap
o Code style checkers work the same way

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Structural Analysis

class X

_—

class X {
Logger logger;
public void foo() {
if (logger.inDebug()) {

conn + “connections.”);

SOFTWARE
RESEARCH

INstitute ror ‘ Ldriegie vicloi ULuversiy

logger.debug(“We have ”

+

School of Computer Science

field method
logger foo
_—
if stmt
method block

invoc.

~N \

logger inDebug method

invoc.
_
logger debug parameter

class X

field method
logger
class X {
Logger logger;
public void foo() {
method
if (logger.inDebug()) { in
logger.debug(“We have 7 + \
conn}+ “connections.”); logge inDebug method
}
} logger debug | | parameter

class Logger {

boolean inDebug() {..}
void debug(String msg) {..}

Bug finding

= public Boolean decide() {
if (computeSomething()==3)
return Boolean. TRUE;

if (computeSomething()==4) verag History 4% Buginfo & ¥ Bug Exf = E
return false; B}
return null; L

Bug: FBTest.decide() has Boolean return type and returns explicit null

A method that returns either Boolean.TRUE, Boolean.FALSE or null is an accident waiting to happen.
This method can be invoked as though it returned a value of type boolean, and the compiler will insert
automatic unboxing of the Boolean value. If a null value is returned, this will result in a
NullPointerException.

Confidence: Normal, Rank: Troubling (14)
Pattern: NP BOOLEAN RETURN_NULL
Type: NP, Category: BAD PRACTICE (Bad practice)

SOFTWARE
RESEARCH

| S r institute for | Carnegie Mellon University
School of Computer Science

Structural Analysis to Detect
Goto Fail?

1. static OSStatus
2. SSLVerifySignedServerKeyExchange (SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4. uint8 t *signature,

5. UIntl6 signaturelLen) {

6. OSStatus err;

7.

8. if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
9. goto fail;

10. if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)
14. goto fail;

institure for |~ Carnegie Mellen University
SOFTWARE | . LG
% RESEARCH | School of COPRUTEY Science

Summary:
Syntactic/Structural Analyses

* Analyzing token streams or code structures (ASTs)
e Useful to find patterns

* Local/structural properties, independent of execution paths

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Summary: Syntactic/Structural Analyses

* Tools include Checkstyle, many linters (C, JS, Python, ...), Findbugs, others

M Java - Checker.java -

File Edit Source Refactor Navigate Search Project Run Window Help

jri-Hels-0-9 - Q- | EFG- |®F [|8 -5 -0 G-
Eﬁ[g?;;;r [Resource

1J] DefaultContext.java)] CheckstyleTask.java 1J] DefaultConfigurat...

/!!
* This class provides the functionality to check a set of files.

* @author Oliver Burn

* fanthor Stephane Bailliez
* @aunthor lkuehne

*/

public class Checker extends AutomaticBean
implements MessageDispatcher

{
/** maintains error count */

private final Irstsentence should end with a period.|2TeX
new Sej Press 'F2’ for focus |t YLevel . ERROR) ;

/** wvector of listeners */
private final ArrayList mListeners = new ArrayList():

/** wvector of fileset checks */
private final ArrayList mFileSetChecks = new ArrayList():

SOFTWARE
RESEARCH SChOO| Of Com

| S r institute for | Carnegie Mellon Us

B T - @< F

Tools: Compilers

* Type checking, proper initialization API, correct APl usage

M|

Program

Compiler output

int add(int x,int y) {
return x+y;

}

void main () {
add (2) ;
}

$> error: too few arguments to
function ‘int add(int, int)’

SOFTWARE
RESEARCH

institute for | (Carnegie Mellon University

School of Computer Science

CONTROL-FLOW ANALYSIS

0
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Control/Dataflow analysis

e Reason about all possible executions, via paths through a control flow

graph.

o Track information relevant to a property of interest at every program point.
o Including exception handling, function calls, etc

* Define an abstract domain that captures only the values/states relevant
to the property of interest.

* Track the abstract state, rather than all possible concrete values, for all
possible executions (paths!) through the graph.

(Carnegie Mellon University
School of Computer Science

RESEARCH

institute for
| S r SOFTWARE

Control/Dataflow analysis

e Reason about all possible executions, via paths through a control flow
graph.

o Track information relevant to a property of interest at every program point.

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

Control flow graphs
.a=5+ (2 + 3)

. 1f (b > 10) {

1
* Atree/graph-based 2
3. a = 0;
4
5

representation of the flow of
control through the program.
o Captures all possible execution

}

paths.
. Yeturn a;

* Each node is a basic block: no

jumps in or out. (entry)
e Edges represent control flow

options between nodes. a=>5+(2+3)
* Intra-procedural: within one if(b>10)

function.

o cf. inter-procedural a =0

institute for |~ Carnegie Mellon University
| S r SOFTWARE .
ResearcH | ochool of Computer Science

(= pUbliC int foo() {

. dostuff();
3 doMoreStuff();

0
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer head *

3.get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags);

8. «cli(); // disables interrupts

9. 1f ((bh = sh->buffer pool) == NULL)
10. return NULL;

11. sh->buffer pool = bh -> b next;
12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts

Draw control-flow graph

(Carnegie Mellon Unive fo rt h I S fu nct | on
School of Computer Science

return bh;

institute for
| S r SOFTWARE
RESEARCH

(entry)

1. int foo() { ziilgifd long flags;

2. unsigned long flags; save flags(flags);

3. int rv;

4. save flags(flags);

5. cli(); cli();

6. rv = dont interrupt();

7. if (xrv > 0) {

8. /7 40 _stuft rv = dont interrupt();

9. restore flags();

10. } else {

11. handle error case(); if (rv > 0)

12. }

13. return rv; — k/////////*
14. } /7 do_stutff handle error case();

restore flags();

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

(entry)

1. int foo() { ziilgifd long flags;
2. unsigned long flags; save flags(flags);

3. int rv;

4. save flags(flags);

5. cli(); cli();

6. rv = dont interrupt();

7. if (rv > 0) {

8. // do_stuff rv = dont_ interrupt();
9. restore flags();

10. } else {

11. handle error case(); if (rv > 0)

12. }

13. return rv; k/////////*
14. } // do_stuff

handle error case();

restore flags();

SOFTWARE
RESEARCH

|Sf institute for | (Carnegie Mellon University

School of Computer Science

(entry)

1. int foo() { liiis:lg\rfd long flags;

2. unsigned long flags; save flags(flags);

3. int rv;

4. save flags(flags);

5. cli(); cli();

6. rv = dont interrupt();

7. while (rv > 0) {

8. // do_stuff rv = dont_ interrupt();

9. restore flags();

10. } else {

11. handle error case(); if (rv > 0)

12. }

13. return rv; k/////////*

14. } // do_stuff handle error case();
restore flags();

SOFTWARE
RESEARCH

|Sf institute for | (Carnegie Mellon University

School of Computer Science

(entry)

1. int foo() { liiis:lg\rfd long flags;

2. unsigned long flags; save flags(flags);

3. int rv;

4. save flags(flags);

5. cli(); cli();

6. rv = dont interrupt();

7. while (rv > 0) {

8. // do_stuff rv = dont_ interrupt();

9. restore flags();

10. } else—+

11. handle error case(); if (rv > 0)

12. +

13. return rv; k/////////*

14. } // do_stuff handle error case();
restore flags();

SOFTWARE
RESEARCH

|Sf institute for | (Carnegie Mellon University

School of Computer Science

(entry)

1 int foo() { zzilzifd long flags;

2 unsigned long flags; save flags(flags);

3 int rv;

4. save flags(flags);

> cli(); cli();

6 rv = dont interrupt();

7. while (rv > 0) {

8 /7 do_stuff rv = dont_interrupt();

9. restore flags();

10. ! while (rv >

11. handle error case(0\

12. '

13. return rv; k///////,*

14. } // do_stuff handle error case();
restore flags(); - —

—

return rv;

SOFTWARE
RESEARCH

institute for | (Carnegie Mellon University

School of Computer Science

Control/Dataflow analysis

* Define an abstract domain that captures only the values/states relevant

to the property of interest.
* Track the abstract state, rather than all possible concrete values, for all
possible executions (paths!) through the graph.

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Abstract Domain: interrupt checker

maybe-enabled

- institute for | Carnegie Mellon University
| S r SOFTWARE .
ResearcH | ochool of Computer Science

Reasoning about a CFG

* Analysis updates state at program points: points between nodes.
* For each node:

o determine state on entry by examining/combining state from predecessors.
o evaluate state on exit of node based on effect of the operations (transfer).

* [terate through successors and over entire graph until the state at each
program point stops changing.

e Output: state at each program point

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

Transfer function

assume: pre-block program point: interrupts enabled

cli();

N
-

post-block program point: interrupts disabled

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Transfer function

assume: pre-block program point: interrupts disabled

l

// do _stuff
restore flags();

l

post-block program point: interrupts enabled

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Join

assume: pre-block program point: interrupts disabled

if (rv > 0)

true branch: false branch:
interrupts disabled interrupts disabled
// do _stuff

handle error case();
restore flags(); — —

interrupts enabled interrupts disabled

interrupts...?

N

' 13. return rv;

—

SOFTWARE
RESEARCH

|Sr institute for | Carnegie Mellon University

School of Computer Science

Interrupt analysis: join function

e Abstraction
o 3 states: enabled, disabled, maybe-enabled
o Program counter

* Join: If at least one predecessor to a basic block has interrupts enabled
and at least one has them disabled...

o Join(enabled, enabled) = enabled
o Join(disabled, disabled) = disabled
o Join(disabled, enabled) 2 maybe-enabled
o Join(maybe-enabled, *) 2 maybe-enabled

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

0O JdJo O WDN -
(]

R R R P PO
B W N P O

int foo() {

unsigned long flags;

int rv;
save flags(flags);
cli();

(entry)

o = enabled

unsigned long flags;
int rv;
save flags(flags);

rv = dont interrupt();

if (rv > 0) {
// do_stuff
restore flags(
} else {

o = enabled

cli(

) ;

o = disabled

rv =

dont_ interrupt();

)

handle error case();

> disabled/\ 0 > disabled

}

return rv;

o = disabled

if (rv

> 0)

// do_stuff

restore flags();

oemed\

handle error case();

y/g;)ﬂﬁgag;

return

rv;

2: Maybe enabled: problem!

(exit) ”

Abstraction

(entry)
1. void foo() {
o ﬁ
3. cli();
4. if (a) {
5. restore flags(); 4. if (rv > 0)
6. }
7. }

(exit)

S r institute for Garnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Too simple?

* Even just tracking a global state like this per function (control flow
analysis) is useful, e.g.:
o Dead-code detection in many compilers (e.g. Java)

o Instrumentation for dynamic analysis before and after decision points; loop
detection

o Actual interrupt analysis in the linux kernel!

 One immediate step up in complexity is to track some state per variable
(dataflow analysis).

* For example: could a variable ever be 0? (what kinds of errors could this
check for?)

o Original domain: N maps every variable to an integer. Number of possible
concrete states gigantic
* n 32 bit variables results in 232*n states
= With loops, states can change indefinitely

o Abstract state space is much smaller: a variable is zero, not zero, or maybe-zero:
2(n*3)

51

