
Quality Assurance 
Process

Claire Le Goues
November 7, 2019

1



How to get developers to 
[write tests|use static 
analysis|appreciate

testers]
Claire Le Goues

November 7, 2019

2



Learning Goals

• Understand process aspects of QA
• Describe the tradeoffs of QA techniques
• Select an appropriate QA technique for a given project and quality 

attribute
• Decide the when and how much of QA
• Overview of concepts how to enforce QA techniques in a process
• Select when and how to integrate tools and policies into the process: 

daily builds, continuous integration, test automation, static analysis, 
issue tracking, …

• Understand human and social challenges of adopting QA techniques
• Understand how process and tool improvement can solve the dilemma 

between features and quality

3



4

Throughout the case studies,
look for nontechnical challenges
and how they were addressed
(social issues, process issues, …)



CASE STUDY: GOOGLE’S TRICORDER

5



Case Study

• Context (goals, stages)
• Problems
• Insights
• Solutions
• Lessons learned transferable to other companies?

6



Integrate Static Analysis in Review Process

• Static analysis as bots in code review tool
o Automatically applied on each commit
o Results visible to author and reviewers

• Lightweight checkers, easy to add and modify
• Feedback buttons to indicate ineffective checkers

7

Sadowski, Caitlin, et al. "Tricorder: Building a program analysis ecosystem." 
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. 
Vol. 1. IEEE, 2015.



8



9



CASE STUDY: QA (PREVIOUSLY) AT 
MICROSOFT

Caveat: this stuff isn’t how they do things anymore!

10



11



12



Microsoft's Culture

• Hiring the best developers
o “Microsoft can achieve with a few hundred top-notch developers for 

what IBM would need thousands”

• Giving them freedom
• Teams for products largely independent
• Relatively short development cycles

o Version updates (eg. Excel 3->4) 1-2 month
o New products 1-4 years
o Driven by release date

• Little upfront specification, flexible for change and cutting 
features

13



Early Days (1984): Separate testing from 
development
• after complaints over bugs from hardware manufacturers (eg. wrong 

computations in BASIC)
• customers complained about products
• IBM insisted that Microsoft improves process for development and 

quality control
• Serious data-destroying bug forced Microsoft to ship update of 

Multiplan to 20000 users at 10$ cost each
• Resistance from developers and some management (incl. Balmer): 

“developers could test their own products, assisted on occasion by high 
school students, secretaries, and some outside contractors”

• Hired outside testers
• Avoided bureaucracy of formal inspections, signoff between stages, or 

time logging
• Separate testing group; automated tests; code reviews for new people 

and critical components

14



Early Days (1986): Testing groups

• “Developers got lazy”, relied on test team for QA
• “Infinite defects” - Testers find defects faster than developers 

can fix them
• Late and large integrations (“big bang”) - long testing periods, 

delayed releases
• Mac Word 3 desaster: 8 month late, hundreds of bugs, including 

crashing and data destroying bugs; 1M$ for free upgrades
• Pressure on delivering quality grew

15



1989 Retreat and “Zero defects”

• see memo

16



Zero-Defect Rules for Excel 4

• All changes must compile and link
• All changes must pass the automated quick tests on Mac and 

Windows
• Any developer who has more than 10 open bugs assigned must 

fix them before moving to new features

17



Testing Buddies

• Development and test teams separate, roughly similar size
• Developers test their own code, run automated tests daily
• Individual testers often assigned to one developer

o Testing their private releases (branch), giving direct, rapid feedback by 
email before code is merged

18



Testers

• Encouraged to communicate with support team and customers, 
review media evaluations

• Develop testing strategy for high-risk areas
• Many forms of testing (internally called): unstructured testing, 

ad hoc testing, gorilla testing, free-form Fridays

19



Early-mid 90s

• Zero defect goal (1989 memo)
• Milestones (first with Publisher 1.0 in 1988)
• Version control, branches, frequent integration
• Daily builds
• Automated tests (“quick autotest”) - must succeed before checkin
• Usability labs
• Beta testing (400000 beta testers for Win 95) with instrumentation
• Brief formal design reviews; selected code reviews
• Defect tracking and metrics
• Developers stay in product group for more than one release cycle

20



Metrics

• Number of open bugs by severity 
o Number of open bugs expected to decrease before milestone
o All know severe bugs need to be fixed before release
o Severity 1 (product crash), Severity 2 (feature crash), Severity 3 (bug with 

workaround), Severity 4 (cosmetic/minor)
o Metrics tracked across releases and projects

• Performance metrics
• Bug data used for deciding when “ready to ship”

o Relative and pragmatic, not absolute view
o “The market will forgive us for being late, but they won't forgive us for 

being buggy”

21



Challenges of Microsoft's Culture

• Little communication among product teams
• Developers and testers often “not so well read in with software-

engineering literature, reinventing the wheel”
o Long underestimated architecture, design, sharing of components, 

quality metrics, …

• Developers resistant to change and “bureaucracy”

22



Project Postmortem

• Identify systematic problems and good practices (10-150 page 
report)
o document recurring problems and practices that work well
o e.g.,

§ breadth-first → depth-first & tested milestones
§ insufficient specification
§ not reviewing commits
§ using asserts to communicate assumptions
§ lack of adequate tools → automated tests
§ instrumented versions for testers and beta releases
§ zero defect rule not a priority for developers

• Circulate insights as memos, encourage cross-team learning

23



Process Audits

• Informal 1-week audits in problematic problems
• Analyzing metrics, interviewing team members
• Recommendations to pick up best practices from other teams

o daily builds, automated tests, milestones, reviews

24



The 2002 
Trustworthy Computing Memo

http://news.microsoft.com/2012/01/11/memo-from-bill-gates/

25



Code Reviews

• Own code review tools (passaround style)
• Internal studies on how effective reviews are
• Internal tools to improve code reviews

26



/

27

Static Analysis 18Analysis of Software Artifacts
© 2009 Jonathan Aldrich



Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of software model checking 
with SLAM." Communications of the ACM 54.7 (2011): 68-76.

SLAM/SDV (since 2000)

• Goal: Reducing blue screens, often caused by drivers
• Driver verification tool for C
• Model checking technology
• Finds narrow class of protocol violations

o Use characteristics of drivers (not general C code)
o Found several bugs in Microsoft's well tested sample drivers

• Fully automated in Microsoft compiler suite
• Available for free
• Enforcement through driver certification program

28



SLAM

• Compelling business case: eliminated most blue screens
• Based on basic science of model checking: originated in 

university labs with public funding

29



2010: Agile

• Web-based services and C++ evolution requires faster iteration
• Embrace of agile methods
• Massive reduction of testing team (from two testers per 

developers toward one): developers now expected to do their 
own testing

30



Annotation
• How to motivate developers, especially with millions of lines of 

unannotated code?
• Microsoft approach:

o Require annotations at checkin (e.g., Reject code that has a char* with no 
__ecount())

o Make annotations natural, like what you would put in a comment anyway
§ But now machine checkable
§ Avoid formality with poor match to engineering practices

o Incrementality
§ Check code design consistency on every compile
§ Rewards programmers for each increment of effort

• Provide benefit for annotating partial code
• Can focus on most important parts of the code first
• Avoid excuse: I’ll do it after the deadline

o Build tools to infer annotations
§ Inference is approximate and so annotations may need to be changed, but saves work 

overall.
§ Unfortunately not yet available outside Microsoft

31



Bounimova, Ella, Patrice Godefroid, and David Molnar. "Billions and billions of constraints: 
Whitebox fuzz testing in production." In Proceedings of the 2013 
International Conference on Software Engineering, pp. 122-131. IEEE Press, 2013.

SAGE

• White-box fuzz testing (symbolic-execution-based test 
generation)

• Especially for security issues in file and protocol parsing routines
o “found many previously-unknown security vulnerabilities in hundreds of 

Microsoft applications, including image processors, media players, file 
decoders and document parsers”

• In-house SMT constraint solver (Z3)
• From research project to large-scale deployment

o Running at scale on 200 machines

32



Bug prediction

• Metrics
• Mining software repositories
• Example results:

o Distributed development not critical, but organizational distance is

• Now prioritizing testing effort

33



Boogie, Dafny, ...

• Intermediate Verification Language
• “Usable formal verification”

o Dafny language...

• Active research today...

34



Case Study: Microsoft

• Microsoft plans software in features
• 3-4 milestones per release
• After each milestone reconsider which features should still be 

implemented
• Stabilization and freeze at end of milestone

35

Cusumano and Selby. Microsoft Secrets.



36



QA Process Considerations

• We covered several QA techniques:
o Formal verification (15-112)
o Unit testing, test driven development
o Various forms of advanced testing for quality attributes (GUI testing, 

fuzz testing, …)
o Static analysis
o Dynamic analysis
o Formal inspections and other forms of code reviews

• But: When to use? Which techniques? How much? How to 
introduce? Automation? How to establish a quality culture? How 
to ensure compliance? Social issues? What about external 
components?

37



38



Qualities and Risks

• What qualities are required? (requirements engineering)
• What risks are expected?

• Align QA strategy based on qualities and risks

39



Example: Test plans linking development and 
testing

40

Sommerville. Software Engineering. Ed. 8, Ch 22



Example: SQL Injection Attacks

41

http://xkcd.com/327/
Which QA strategy is suitable?



Example: Scalability

42

Which QA strategy is suitable?



Example: Usability

43

Which QA strategy is suitable?



44

Quality / SecurityCa
pa

bi
lit

ie
s /

 F
ea

tu
re

s /
 P

er
fo

rm
an

ce

2004

Market

M
ar

ke
t

2014?

2014?

te
ch

no
lo

gy
 

an
d 

pr
ac

tic
es



QA Tradeoffs

• Understand limitations of QA approaches
o e.g. testing vs static analysis, 

formal verification vs inspection, …

• Mix and match techniques
• Different techniques for different qualities

45





QA WITHIN THE PROCESS

47



QA as part of the process

• Have QA deliverables at milestones (management policy)
o Inspection / test report before milestone

• Change development practices (req. developer buy-in)
o e.g., continuous integration, pair programming, reviewed checkins, zero-

bug static analysis before checking

• Static analysis part of code review (Google)
• Track bugs and other quality metrics

48



Defect tracking

• Issues: Bug, feature request, query
• Basis for measurement

o reported in which phase
o duration to repair, difficulty
o categorization 

-> root cause analysis

• Facilitates communication 
o questions back to reporter
o ensures reports are not 

forgotten

• Accountability

49



Enforcement

• Microsoft: check in gates
o Cannot check in code unless analysis suite has been run and 

produced no errors (test coverage, dependency violation, insufficient/bad 
design intent, integer overflow, allocation arithmetic, buffer overruns, memory 
errors, security issues)

• eBay: dev/QA handoff
o Developers run FindBugs on desktop
o QA runs FindBugs on receipt of code, posts results, require high-

priority fixes.

• Google: static analysis on commits, shown in review
• Requirements for success
o Low false positives
o A way to override false positive warnings (typically through 

inspection).
o Developers must buy into static analysis first 50



Reminder: Continuous Integration

51



Automating Test Execution

52



Continuous Integration with 
Travis-CI

53



SOCIAL ASPECTS

54



Social issues

• Developer attitude toward defects
• Developer education about security
• Using peer pressure to enforce QA practices

o Breaking the build – various rules

55



Social issues

• Developer vs tester culture
• Testers tend to deliver bad news
• Defects in performance evaluations?
• Issues vs defects
• Good test suits raise confidence, encourage shared code 

ownership

56



Reporting Defects

• Reproducible defects
• Simple and general
• One defect per report
• Non-antagonistic 

o (testers usually bring bad news)
o State the problem
o Don't blame

57



58



59



60



61



62



Summary

• Developing a QA plan:
o Identify quality goals and risks
o Mix and match approaches
o Enforce QA, establish practices

• Case study from Microsoft
• Integrate QA in process
• Social issues in QA

63



Further Reading
• Cusumano, Michael A., and Richard W. Selby. "Microsoft secrets." 

(1997).
o Book covers quality assurance at Microsoft until the mid 90s (and much 

more)
• Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of 

software model checking with SLAM." Communications of the ACM 
54.7 (2011): 68-76.
o An overview of SLAM at Microsoft

• Jaspan, Ciera, I. Chen, and Anoop Sharma. "Understanding the value of 
program analysis tools." Companion OOPSLA. ACM, 2007.
o Description of eBay evaluating FindBugs

• Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., & Winter, C. 
Tricorder: Building a Program Analysis Ecosystem. ICSE 2015
o Integrating static analysis into code reviews at Google in a data-driven way

• Sommerville. Software Engineering. 8th Edition. Chapter 27
o QA planning and process improvement, standards

64


