
QA Process part 2, 
Inspections/Code Review

Claire Le Goues
November 19, 2020

1



Administrivia

• No lecture next week.



Learning Goals

• Overview of concepts how to enforce QA techniques in a process
• Select when and how to integrate tools and policies into the process: daily builds, 

continuous integration, test automation, static analysis, issue tracking, …
• Understand human and social challenges of adopting QA techniques
• Understand how process and tool improvement can solve the dilemma between 

features and quality
• Understand different forms of peer reviews with different formality levels.
• Engage in constructive modern code review using a typical commit review 

system.  
• Describe the benefits and properties of good checklists in code review. 
• Mitigate social and cultural issues in code review. 
• Contrast motivations for and benefits of commit review at modern tech 

companies.

3



2010: Agile

• Web-based services and C++ evolution requires faster iteration
• Embrace of agile methods
• Massive reduction of testing team (from two testers per developers 

toward one): developers now expected to do their own testing

4



Annotation

• How to motivate developers, especially with millions of lines of unannotated 
code?

• Microsoft approach:
o Require annotations at checkin (e.g., Reject code that has a char* with no __ecount())
o Make annotations natural, like what you would put in a comment anyway

§ But now machine checkable
§ Avoid formality with poor match to engineering practices

o Incrementality
§ Check code ↔ design consistency on every compile
§ Rewards programmers for each increment of effort

• Provide benefit for annotating partial code
• Can focus on most important parts of the code first
• Avoid excuse: I’ll do it after the deadline

o Build tools to infer annotations
§ Inference is approximate and so annotations may need to be changed, but saves work overall.
§ Unfortunately not yet available outside Microsoft

5



Bug prediction

• Metrics
• Mining software repositories
• Example results:

o Distributed development not critical, but organizational distance is

• Now prioritizing testing effort

6



Case Study: Microsoft

• Microsoft plans software in features
• 3-4 milestones per release
• After each milestone reconsider which features should still be 

implemented
• Stabilization and freeze at end of milestone

7

Cusumano and Selby. Microsoft Secrets.



8



QA WITHIN THE PROCESS

9



QA Process Considerations

• We covered several QA techniques:
o Formal verification (15-112)
o Unit testing, test driven development
o Various forms of advanced testing for quality attributes (GUI testing, fuzz testing, 

…)
o Static analysis
o Dynamic analysis
o Formal inspections and other forms of code reviews

• But: When to use? Which techniques? How much? How to introduce? 
Automation? How to establish a quality culture? How to ensure 
compliance? Social issues? What about external components?

10



Qualities and Risks, tradeoffs

• What qualities are required? (requirements engineering)
• What risks are expected?

• Align QA strategy based on qualities and risks

• Understand limitations of QA approaches
o e.g. testing vs static analysis, 

formal verification vs inspection, …

• Mix and match techniques for different qualities

11



QA as part of the process

• Have QA deliverables at milestones (management policy)
o Inspection / test report before milestone

• Change development practices (req. developer buy-in)
o e.g., continuous integration, pair programming, reviewed checkins, zero-bug static 

analysis before checking

• Static analysis part of code review (Google)
• Track bugs and other quality metrics

12



Defect tracking

• Issues: Bug, feature request, query
• Basis for measurement

o reported in which phase
o duration to repair, difficulty
o categorization 

-> root cause analysis

• Facilitates communication 
o questions back to reporter
o ensures reports are not 

forgotten

• Accountability

13



Enforcement

• Microsoft: check in gates
o Cannot check in code unless analysis suite has been run and produced no 

errors (test coverage, dependency violation, insufficient/bad design intent, integer 
overflow, allocation arithmetic, buffer overruns, memory errors, security issues)

• eBay: dev/QA handoff
o Developers run FindBugs on desktop
o QA runs FindBugs on receipt of code, posts results, require high-priority 

fixes.

• Google: static analysis on commits, shown in review
• Requirements for success
o Low false positives
o A way to override false positive warnings (typically through inspection).
o Developers must buy into static analysis first

14



Reminder: Continuous Integration

15



Automating Test Execution

16



Continuous Integration with 
Travis-CI

17



SOCIAL ASPECTS

18



Social issues

• Developer attitude toward defects
• Developer education about security
• Using peer pressure to enforce QA practices

o Breaking the build – various rules

• Developer vs tester culture
o Testers tend to deliver bad news

• Defects in performance evaluations?
• Issues vs defects
• Good test suits raise confidence, encourage shared code ownership

19



Reporting Defects

• Reproducible defects
• Simple and general
• One defect per report
• Non-antagonistic 

o (testers usually bring bad news)
o State the problem
o Don't blame

20



21



22



23

Code Reviews and Inspection



“Many eyes make all bugs shallow”
Standard Refrain in Open Source

“Have peers, rather than customers,
find defects”

Karl Wiegers

24



Isn’t testing sufficient?

• Errors can mask other errors
• Only completed implementations can be tested (esp. scalability, 

performance)
• Design documents cannot be tested
• Tests don’t check code quality
• Many quality attributes (eg., security, compliance, scalability) are difficult 

to test

25



A second pair of eyes

• Different background, different experience
• No preconceived idea of correctness
• Not biased by “what was intended”

26



FORMAL INSPECTIONS



Formal Inspections

• Idea popularized in 70s at IBM
• Broadly adopted in 80s, much research

o Sometimes replacing component testing

• Group of developers meets to formally review code or other artifacts
• Most effective approach to find bugs 

o Typically 60-90% of bugs found with inspections

• Expensive and labor-intensive

28
(see textbook Chapter 22.2)



Inspection Team and Roles

• Typically 4-5 people (min 3)
• Author
• Inspector(s)

o Find faults and broader issues

• Reader
o Presents the code or document at inspection meeting

• Scribe
o Records results

• Moderator
o Manages process, facilitates, reports

29



Checklists

• Reminder what to look for
• Include issues detected in the past
• Preferably focus on few important items
• Examples:

o Are all variables initialized before use?
o Are all variables used?
o Is the condition of each if/while statement correct?
o Does each loop terminate?
o Do function parameters have the right types and appear in the right order?
o Are linked lists efficiently traversed?
o Is dynamically allocated memory released?
o Can unexpected inputs cause corruption?
o Have all possible error conditions been handled?
o Are strings correctly sanitized?

30



Process details

• Authors do not explain or defend the code – not objective
o Author != moderator, != scribe, !=reader
o Author should still join the meeting to observe questions and misunderstandings 

and clarify issues if necessary

• Reader (optional) walks through the code line by line, explaining it
o Reading the code aloud requires deeper understanding
o Verbalizes interpretations, thus observing differences in interpretation

31



32https://help.github.com/articles/using-pull-requests/



33



34



35

Gerrit
(open source)



http://www.mediawiki.org/wiki/Gerrit/Advanced_usage



37
https://www.kernel.org/doc/Documentation/SubmittingPatches



Process: Checklists!

38

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

https://en.wikipedia.org/wiki/File:B17_-_Chino_Airshow_2014_(framed).jpg



DEVELOP CHECKLIST FOR CODE REVIEW
Activity



EXPECTATIONS AND OUTCOMES 
OF MODERN CODE REVIEWS



Reasons for Code Reviews

• Finding defects
o both low-level and high-level issues
o requirements/design/code issues
o security/performance/… issues

• Code improvement
o readability, formatting, commenting, consistency, dead code removal, naming
o enforce to coding standards

• Identifying alternative solutions
• Knowledge transfer

o learn about API usage, available libraries, best practices, team conventions, 
system design, "tricks", …

o "developer education", especially for junior developers

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code 
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.



Reasons for Code Reviews (continued)

• Team awareness and transparency
o let others "double check" changes
o announce changes to specific developers or entire team ("FYI")
o general awareness of ongoing changes and new functionality

• Shared code ownership
o shared understanding of larger part of the code base
o openness toward critique and changes
o makes developers "less protective" of their code

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code 
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.



Code Review at Microsoft

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code 
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.



Outcomes (at Microsoft analyzing 200 reviews with 
570 comments)
• Most frequently code improvements (29%)

o 58 better coding practices
o 55 removing unused/dead code
o 52 improving readability

• Defect finding (14%)
o 65 logical issues (“uncomplicated logical errors, eg., corner cases, common 

configuration values, operator precedence)
o 6 high-level issues
o 5 security issues
o 3 wrong exception handling

• Knowledge transfer
o 12 pointers to internal/external documentation etc

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code 
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.



Outcomes (Analyzing Reviews)

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code 
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.



Mismatch of Expectations and Outcomes

• Low quality of code reviews
o Reviewers look for easy errors, as formatting issues
o Miss serious errors

• Understanding is the main challenge
o Understanding the reason for a change
o Understanding the code and its context
o Feedback channels to ask questions often needed

• No quality assurance on the outcome

46

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code 
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.



Code Review at Google

• Introduced to “force developers to write code that other developers could 
understand”

• 3 Found benefits:
o checking the consistency of style and design
o ensuring adequate tests
o improving security by making sure no single developer can commit arbitrary code 

without oversight

47

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko and Alberto Bacchelli. 2018. Modern Code 
Review: A Case Study at Google. International Conference on Software Engineering



48



Social issues: Egos in Inspections

• Author’s self-worth in artifacts
• Identify defects, not alternatives; do not criticize authors

o “you didn’t initialize variable a” -> “I don’t see where variable a is initialized”

• Avoid defending code; avoid discussions of solutions/alternatives
• Reviewers should not “show off” that they are better/smarter
• Avoid style discussions if there are no guidelines
• Author decides how to resolve fault

49



Social issues 2

• Moderator must move discussion along, resolve conflicts
• Meetings should not include management
• Do not use for HR evaluation

o “finding more than 5 bugs during inspection counts against the author”
o Leads to avoidance, fragmented submission, not pointing out defects, holding pre-

reviews

• Responsibility for quality with authors, not reviewers
o “why fix this, reviewers will find it”

50



Summary

• Code reviews effective to identify bugs
• Additional benefits (e.g., knowledge transfer, shared code ownership, 

awareness)
• Reviews require understanding
• Different review types with different formality
• Formal inspection require planning & social skills, are expensive, but very 

effective

51



Further Reading

• Sommerville. Software Engineering. 8th Edition. Addison-Wesley 2007. 
Chapter 22.2 
o Overview of formal inspections

• Wiegers. Peer Reviews in Software. Addison-Wesley 2002
o Entire book on formal inspections; how to run them and how to introduce them

• Bacchelli and Bird. "Expectations, outcomes, and challenges of modern 
code review.“ Proceedings of the 2013 International Conference on 
Software Engineering. IEEE Press, 2013.
o Detailed studies of modern code reviews at Microsoft

• Oram and Wilson (ed.). Making Software. O’Reilly 2010. Chapter 18
o Overview of empirical research on formal inspections

52


