
Process: Linear to Agile
Claire Le Goues

1

Learning goals
• Understand the need for process considerations
• Select a process suitable for a given project
• Address project and engineering risks through iteration
• Ensure process quality.
• Define agile as both a set of iterative process practices and a business approach for aligning

customer needs with development.
• Explain the motivation behind and reason about the tradeoffs presented by several common

agile practices.
• Summarize both scrum and extreme programming, and provide motivation and tradeoffs

behind their practices.
• Identify and justify the process practices from the agile tradition that are most appropriate in a

given modern development process.

2

Administrivia
• Reflections.
• Final presentation protocol, video.

3

Writing for Professionals

Communication Tips
• The more important the person you are communicating with, the more

limited their time. Your success depends on your ability to get your
message through as quickly as possible

• Respect their time for optimal results. Plan on your document to be
skimmed. Draw them to the most important parts using bold,
paragraphs, indentation, etc.

• If you have a specific ask, make it as clear as possible.
• Make it easy for them to understand why you arrived at that conclusion

HW 4 Example

THE WATERFALL MODEL

7

8

Requirements
Engineering

Architectural
design

Detailed
design

Coding

Unit testing

Integration
testing

Operation and
Maintenance

Win Royce and Barry Boehm, 1970

Why was this an important step?
What are limitations?

9

1:32pm
July 16th 1969

Key challenge: Change
• Software seems changeable ("soft")
• Developers prone to changes and "extra features"
• Customers often do not understand what is easy to change and what is

hard
• "Good enough" vs. "optimal"

10

The "V" Model (80s, 90s)

11

‹#›

Drive from engineering risks:
Requirements
Design
Implementation

The Spiral Model (Barry Boehm)

When is waterfall appropriate?
1. The requirements are known in advance.
2. The requirements have no unresolved, high-risk risks such as due to cost,

schedule, performance, safety, security, user interfaces, organizational
impacts, etc.

3. The nature of the requirements will not change very much.
4. The requirements are compatible with all the key system stakeholders’

expectations.
5. The architecture for implementing the requirements is well understood.
6. There is enough time to proceed sequentially.

13

Early improvement: sequencing
• Enforce earlier software considerations
• Waterfall instituted at TRW (Aerospace Govt Contractor) in 70s, with several

additional recommendations for iterations (like prototypes).
• Modeled after traditional engineering

o blueprints before construction
o decide what to build, build it, test it, deploy
o Reduce change

• Successful model for routine development
• Problematic at large scale

o Requirements -> Delays -> Surprise!

14

Iteration!

15

-> Early and frequent feedback

-> Support for constant adaptation

-> Address risks first

Mitigation of risk through process interventions
(examples)
• Risk-driven process

o Prioritization and prototyping
• Architecture and design

o Isolate/encapsulate risks
o Follow industry standards

• Design for assurance
o Preventive engineering
o Codevelopment of system and evidence

• Functionality and usability
o Prototypes , early usability labs

16

Key: Iterative Processes
• Interleaving and repeating

o Requirements engineering, Risk assessment
o Architecture and design
o Implementation
o Quality assurance
o Deployment

• But when, in which sequence, and how often?
• What measurements can ground decisions?

17

Iteration decision
• Too slow?

o Late reaction, reduce predictability

• Too fast?
o Overhead, reduce innovation

• "Death spiral"
o deferred commitment, prototypes without conclusions, missing feedback loops

• -> Drive by risks and measurement data; per project decision
• Contracts?

18

Iteration decision
• Too slow?

o Late reaction, reduce predictability

• Too fast?
o Overhead, reduce innovation

• "Death spiral"
o deferred commitment, prototypes without conclusions, missing feedback loops

• -> Drive by risks and measurement data; per project decision
• Contracts?

19

DISCUSSION: WHAT MAKES A GOOD PROCESS?
Process quality.

24

Process evaluation
• How predictable are our projects?

• 33% of organizations collect productivity and efficiency data
• 8% collect quality data
• 60% do not monitor their processes

25

Process improvement loop

26

documenting

training and
enforcement

monitoringanalyzing
difference

acting

High-level approaches:
• Opportunistic, based on double-loop learning.
• Analytic, based on measurement + principles
• Best practices frameworks

Agile Software Development Is …
Both:
• a set of software engineering best practices (allowing for rapid delivery of

high quality software)
• a business approach (aligning development with customer needs and

goals)

34

Brief History of Agile

35

1930s

Inception of Iterative and
Incremental Development (IID):
Walter Shewhart (Bell Labs,
signal transmission) proposed a
series of “plan-do-study-act”
(PDSA) cycles

2001

Introduction of “Agile”:
The Agile Manifesto
written by 17 software
developers

XP reified: Kent Beck
released Extreme
Programming Explained:
Embrace Change

1999

Introduction of Scrum:
Jeff Sutherland and Ken
Schwaber presented a paper
describing the Scrum
methodology at a conference
workshop

19951970

Introduction of the waterfall:
Winston Royce’s article
Managing the Development of
Large Software Systems

Agile in a nutshell
• A project management approach that seeks to respond to change and

unpredictability, primarily using incremental, iterative work sequences
(often called “sprints”).

• Also: a collection of practices to facility that approach.
• All predicated on the principles outlined in “The Manifesto for Agile

Software Development.”

36

The Manifesto for Agile Software Development (2001)

37

Value

Individuals and
interactions over Processes and tools

Working software over Comprehensive
documentation

Customer
collaboration over Contract negotiation

Responding to
change over Following a plan

The Twelve Principles of Agile Software Development

38

1. Projects are built around motivated individuals, who should be trusted

2. Face-to-face conversation is the best form of communication (co-location)

3. Self-organizing teams

4. Working software is delivered frequently (weeks rather than months)

5. Working software is the principal measure of progress

6. Sustainable development, able to maintain a constant pace

7. Continuous attention to technical excellence and good design

8. Simplicity—the art of maximizing the amount of work not done—is essential

9. Customer satisfaction by rapid delivery of useful software

10. Close, daily cooperation between business people and developers

11. Welcome changing requirements, even late in development

12. Regular adaptation to changing circumstances

In
di

vi
du

al
s a

nd

in
te

ra
ct

io
ns

Cu
st

om
er

co

lla
bo

ra
tio

n
W

or
ki

ng

so
ft

w
ar

e
Re

sp
on

di
ng

to

 c
ha

ng
e

Agile Practices
• Backlogs (Product and Sprint)
• Behavior-driven development

(BDD)
• Cross-functional team
• Continuous

integration (CI)
• Domain-driven design (DDD)

• Information radiators (Kanban
board, Task board, Burndown
chart)

• Acceptance test-driven
development (ATDD)

• Iterative and incremental
development (IID)

• Pair programming
• Planning poker

• Refactoring
• Scrum meetings (Sprint planning,

Daily scrum, Sprint review and
retrospective)

• Small releases

• Simple design
• Test-driven development (TDD)

• Agile testing
• Timeboxing

• Use case

• User story
• Story-driven modeling

• Retrospective
• On-site customer
• Agile Modeling

• 40-hour weeks
• Short development cycles

• Collective ownership
• Open workspace

• Velocity tracking
• Etc.

39

40-hour Weeks
No one can work a second consecutive week of overtime. Even isolated
overtime used too frequently is a sign of deeper problems that must be
addressed.

40

Planning Poker

41

Collective Ownership
Every programmer improves any code anywhere in the system at any time if
they see the opportunity.

42

Kanban Board

43

Simple Design
“Say everything once and only once”:
At every moment, the design runs all the tests, communicates everything the
programmers want to communicate, contains no duplicate code, and has the
fewest possible classes and methods.

44

On-site Customer
A customer sits with the team full-time.

45

Pair Programming

46

Driver

Navigator

Short development cycle
The software development process is organized in a way in which the full
software development cycle—from design phase to implementation phase to
test and deployment phase—is performed within a short timespan, usually
several months or even weeks.

47

Small Releases
The system is put into production in a few months, before solving the whole
problem. New releases are made often—anywhere from daily to monthly.

48

Continuous Integration (CI)
New code is integrated with the current system after no more than a few
hours. When integrating, the system is built from scratch and all tests must
pass or the changes are discarded.

49

Test-driven development
Programmers write unit tests minute by minute. These tests are collected
and they must all run correctly. Customers write functional tests for the
stories in an iteration.

50

Open workspace

51

Solving Software Development Problems with Agile
Practices

52

Problem in Software Development Agile Methods That Mitigate It
1. Requirement changes during the

development process
Close relation with customer, short development
cycle, small releases, planning poker, Kanban board

2. Scope creep Short development cycle, small releases, planning
poker

3. Architecture erosion Collective ownership, pair programming
4. Under- or overestimation (time and

budget), sticking to the plan
Close relation with customer, planning poker, short
development cycle, small releases

5. Bringing in new developers (time
and effort for their training), steep
learning curve

Collective ownership (pros & cons), planning poker

6. Change of management during the
development process

Close relationship with customer

7. Introducing new bugs as you develop
software

40-hour week, collective ownership, short
development cycle, small releases, tests, CI, pair
programming

Contd.

Solving Software Development Problems with Agile
Practices* (contd.)

53

Problem in Software Development Agile Methods That Mitigate It
8. Challenge of communication Close relation with customer
9. Developer turnover Collective ownership (pros & cons), 40-hour week

10. Integration issues Collective ownership
11. Difficulty of tracking bugs Collective ownership, short development cycle,

small releases, CI, tests
12. Disagreement between developers Close relation with customer
13. Scheduling problems (global team) Close relation with customer
14. “Groupthink” (tendency of

developers to agree with one
another, common thinking among
them), fear of hurting the feelings of
other developers

Planning poker, pair programming

15. Challenges with integrating with
legacy code

Collective ownership

* This is an expanded, but still not comprehensive list.

Scrum

54

Customer, team, scrum master

55

Scrum Process

56

Extreme Programming (XP)

57

Human evolution

XP evolution

Extreme Programming (XP)

58

XP Practices (subset of Agile!)
• TDD (test-first approach).
• Planning game: 1-3 week iterations, one iteration at a time, customer decides which user stories to use
• Whole team/on-site customer: “customer speaks with one voice.” Customer may be a whole team.
• Small releases, with valuable functionality, to guard against unhappy customers.
• System metaphor is a single shared story of how it works. (Sort of like architecture)
• Simplest thing that possibly works (coding for today)
• Refactor all the time, because you don’t have up-front design before programming.
• Collective ownership. Everyone is responsible for everything. If a programmer sees something she doesn’t like,

she can go change it. Task ownership is individual.
• Pair programming. can code alone for nonproduction code like prototypes
• Continuous Integration. A day of development at most.
• Sustainable pace. 40 hour work weeks.
• Coding standards, Especially since all code can change at all times.

59

CASE STUDY
Universal Credit

60

The Twelve Principles of Agile Software Development

61

1. Projects are built around motivated individuals, who should be trusted

2. Face-to-face conversation is the best form of communication (co-location)

3. Self-organizing teams

4. Working software is delivered frequently (weeks rather than months)

5. Working software is the principal measure of progress

6. Sustainable development, able to maintain a constant pace

7. Continuous attention to technical excellence and good design

8. Simplicity—the art of maximizing the amount of work not done—is essential

9. Customer satisfaction by rapid delivery of useful software

10. Close, daily cooperation between business people and developers

11. Welcome changing requirements, even late in development

12. Regular adaptation to changing circumstances

In
di

vi
du

al
s a

nd

in
te

ra
ct

io
ns

Cu
st

om
er

co

lla
bo

ra
tio

n
W

or
ki

ng

so
ft

w
ar

e
Re

sp
on

di
ng

to

 c
ha

ng
e

