Process: Linear to Agile

Claire Le Goues

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Learning goals

 Understand the need for process considerations

* Select a process suitable for a given project

* Address project and engineering risks through iteration
* Ensure process quality.

 Define agile as both a set of iterative process practices and a business approach for aligning
customer needs with development.

* Explain the motivation behind and reason about the tradeoffs presented by several common
agile practices.

 Summarize both scrum and extreme programming, and provide motivation and tradeoffs
behind their practices.

e |dentify and justify the process practices from the agile tradition that are most appropriate in a
given modern development process.

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Administrivia

e Reflections.

* Final presentation protocol, video.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Writing for Professionals

Communication Tips

* The more important the person you are communicating with, the more

limited their time. Your success depends on your ability to get your
message through as quickly as possible

e Respect their time for optimal results. Plan on your document to be
skimmed. Draw them to the most important parts using bold,
paragraphs, indentation, etc.

* |If you have a specific ask, make it as clear as possible.

* Make it easy for them to understand why you arrived at that conclusion

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

HW 4 Example

Ethical Concerns and Considerations
Itis of utmost importance to recognie that the proposed technology can have a large.
impact on students, reviewers, and the school as a whole, While it can definitely have beneficial
applications, it s crucial to clearly address potential concerns with the system thoughtfully and
affirmatively, so as to be socially beneficial for ll stakeholders. Therefore, we have gencrated a

iitial lst of ethical concerns, their risk assessment, and how to address them, prior o any.

deployment of such a system:

Are there any algorithmic biases in the data points used to generate the prediction of

student success? Will they favor some groups versus others just because of the features we.

chose? Will we unknowingly amplify negative behaviors within the applicants?

o Risk Assessment:
© The risk of an algorithmic bias due to the features chosen is extremely high, as

there could be correlations between certain factors such as socioeconomic status,
race, ethnicity, gender, nationality, sexual orientation, politicalireligious and the
features chosen. As a result, depending on the features used, we could create or
reinforce some unfair bias, even with using some features that we belicve to not
do s0. Not only that, but we could amplify certain negative behaviors in
individuals applying and within the community created upon acceptance.
Therefore, it s clear that the feature selection poses an extremely high risk, and

must be chosen with utmost caution.

 Addressing Ethical Concern:
© In onder o address this concern and the high risk that comes with i, it i crucial to

select the features with extreme care, and continually reevaluate our decision to
ensure faimess and not introduce any biases. For sarters, it s clear thata lot of
the features that we can us, could clarly have some bias. As an example,
onsiderthe implications of uilzing whether o not someone paid for extra
classe, has family support, family education / job staus, has acces 10 the
internet, ec... The s goes on, and we could discuss so many of the proposed
features, and analyze tha they could clarly be biased towards wealthicr familics,
or those ofa certain race o religious satus. Therefore, it s imperaive o analyze:
each one ingreat deail,as well a5 to continually cvaluat the ones that end up
being chosen, 1o ensure that they aren’t ntroducing a bias that was not
precamptively thought to creste.

How will we collect this information about the applicant? Can we ensure that we will
incorporate core privacy principles into the collection of dat

o Risk Assessment:
‘There i & moderate amountof risk with this concern, as it is important o adhere
o data privacy righs of individuals,as it could potentially bave lgal implications
a5 we have seen with many large corporatins. Besides only the legaliy of the
data collection, t i important to consider the reputaton of the school, and the
negativ repercussions as a result of unethical practices in data collection.

© Addressing Ethical Concern:

‘o We can addressthis by incorporating lrge degree oftransparency in our data
collection process. To do this, we would ensure that we do not do any extemnal
data collection or analysis of th students, and that we only use data that they
wilingly consent 10 give us. As a result, we can ensure that the dta s collected in
an ethically and informed manner. Not ony that, but we would further vet our
interal methods of storing and analyzing the data so 35 o maintan the
information secure from external individuals, and further anonymous o the
interal developers that utlize the dat.

THE WATERFALL MODEL

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

] Win Royce and Barry Boehm, 1970
Requirements 4_|
L, Architectural
ﬂ
Detailed
h ﬂ
h ﬂ
h ﬂ
Why was this an important step? .
What imitat 5 |—> Integration
dt are limitations: testing 4—I

o ‘ Operation and

Carnegie Mellon University .
School of Computer Science Maintenance

institute for
I S SOFTWARE
RESEARCH

| s 8
LA

1:32pm
July 16th 1969

ids

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Key challenge: Change

e Software seems changeable ("soft")
* Developers prone to changes and "extra features”

e Customers often do not understand what is easy to change and what is
hard

 "Good enough" vs. "optimal”

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

The "V" Model (80s, 90s)

Concept of Opera;ion

. . gme . an

Operations Ver";‘ﬁgt'” Maintenance

) Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, .
Detailed Test, and Project
Design Verification Test and
Integration

Implameantation

0l

Time >

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

CUMULATIVE
COST

DETERMINE

OBJECTIVES,
ALTERNATIVES,
CONSTRAINTS

The Spiral Model (Barry Boehm)

PROGRESS
THROUGH
STEPS

EVALUATE
ALTERNATIVES

IDENTIFY,
RESOLVE RISKS
Drive from engineering risks:
Requirements

Design

Implementation

COMMITMENT,
PARTITION,

REVIEW

OPERATIONAL
PROTOTYPE
PROTOTYPE,

RQTS PLAN
LIFE CYCLE

MODELS BENCHMARKS
— P— -—

——
ﬁ‘

REQUIREMENTS

DETAILED
PRODUCT DESIGN
VALIDATION DESIGN ~ o
DESIGN VALIDATION DEVELOPMENT
AND VERIFICATION
PLAN NEXT N
PHASES INTEGRA-S
institute for
I Sr SOFTWARE
RESEARCH

N TIONAND N
v Accert- \ TEST
IMPLEMEN-\ ANCE TEST
TATION

DEVELOP, VERIFY
NEXT LEVEL PRODUCT

When is waterfall appropriate?

1.

The requirements are known in advance.

The requirements have no unresolved, high-risk risks such as due to cost,
schedule, performance, safety, security, user interfaces, organizational
Impacts, etc.

The nature of the requirements will not change very much.

The requirements are compatible with all the key system stakeholders’
expectations.

The architecture for implementing the requirements is well understood.
There is enough time to proceed sequentially.

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Early improvement: sequencing

e Enforce earlier software considerations

e Waterfall instituted at TRW (Aerospace Govt Contractor) in 70s, with several
additional recommendations for iterations (like prototypes).

 Modeled after traditional engineering
o blueprints before construction
o decide what to build, build it, test it, deploy
o Reduce change

e Successful model for routine development

* Problematic at large scale
o Requirements -> Delays -> Surprise!

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

lteration!

_> Early and frequent feedbac!<
_> Support for constant adaptation
_> Address risks first

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Mitigation of risk through process interventions

(examples)

* Risk-driven process
o Prioritization and prototyping

* Architecture and design
o lIsolate/encapsulate risks
o Follow industry standards

e Design for assurance
o Preventive engineering
o Codevelopment of system and evidence

* Functionality and usability
o Prototypes, early usability labs

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Key: Iterative Processes

* |nterleaving and repeating
o Requirements engineering, Risk assessment
Architecture and design
Implementation
Quality assurance

O O O O

Deployment
 But when, in which sequence, and how often?

 What measurements can ground decisions?

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

lteration decision

e Too slow?

e Too fast?

* -> Drive by risks and measurement data; per project decision

e Contracts?

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

lteration decision

* Too slow?
o Late reaction, reduce predictability

 Too fast?
o Overhead, reduce innovation

e "Death spiral”
o deferred commitment, prototypes without conclusions, missing feedback loops

* -> Drive by risks and measurement data; per project decision

e Contracts?

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Process quality.

DISCUSSION: WHAT MAKES A GOOD PROCESS?

. L4 o L4
institute for Carnegie Mellon University
I S SOF TWARE

RESEARCH School of Computer Science

Process evaluation

 How predictable are our projects?

33% of organizations collect productivity and efficiency data

8% collect quality data

60% do not monitor their processes

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Process improvement loop

documenting

analyzing
difference

High-level approaches:

* Opportunistic, based on double-loop learning.
* Analytic, based on measurement + principles
* Best practices frameworks

training and
enforcement

monitoring

26

Agile Software Development Is ...

Both:

* aset of software engineering best practices (allowing for rapid delivery of
high quality software)

* a business approach (aligning development with customer needs and
goals)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Brief History of Agile

institute for
SOFTWARE
RESEARCH

Inception of Iterative and
Incremental Development (I1ID): Introduction of Scrum:

Walter Shewhart (Bell Labs, Jeff Sutherland and Ken

signal transmission) proposed a Schwaber presented a paper

series of “plan-do-study-act” describing the Scrum

(PDSA) cycles methodology at a conference
workshop

Introduction of the waterfall-
Winston Royce’s article
Managing the Development of

XP reified: Kent Beck
released Extreme
Programming Explained:
Embrace Change

Introduction of “Agile”:
The Agile Manifesto
written by 17 software
developers

Large Software Systems

Carnegie Mellon University
School of Computer Science

1995 19992001

Agile in a nutshell

* A project management approach that seeks to respond to change and

unpredictability, primarily using incremental, iterative work sequences
(often called “sprints”).

* Also: a collection of practices to facility that approach.

* All predicated on the principles outlined in “The Manifesto for Agile
Software Development.”

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

The Manifesto for Agile Software Development (2001)

Value

Individuals and
interactions

Working software

Customer
collaboration

Responding to
change

over

over

over

over

Processes and tools

Comprehensive
documentation

Contract negotiation

Following a plan

37

The Twelve Principles of Agile Software Development

Projects are built around motivated individuals, who should be trusted

Face-to-face conversation is the best form of communication (co-location)

Individuals and
interactions

Self-organizing teams

© 0 N o U A W DN PRE

Working software is delivered frequently (weeks rather than months)
Working software is the principal measure of progress

Sustainable development, able to maintain a constant pace

Working

collaboration software

Continuous attention to technical excellence and good design

Simplicity—the art of maximizing the amount of work not done—is essential

Customer satisfaction by rapid delivery of useful software
_ 10. Close, daily cooperation between business people and developers

11. Welcome changing requirements, even late in development

_ 12. Regular adaptation to changing circumstances

Responding Customer

to change

Agile Practices

Backlogs (Product and Sprint)

Behavior-driven development
(BDD)

Cross-functional team

Continuous
integration (Cl)

Domain-driven design (DDD)

Information radiators (Kanban
board, Task board, Burndown
chart)

Acceptance test-driven
development (ATDD)

Iterative and incremental
development (1ID)

SOFTWARE
RESEARCH

Pair programming
Planning poker
Refactoring

Scrum meetings (Sprint planning,
Daily scrum, Sprint review and
retrospective)

Small releases

Simple design

Test-driven development (TDD)
Agile testing

Timeboxing

Use case

institute for ‘ Carnegie Mellon University

School of Computer Science

User story
Story-driven modeling
Retrospective

On-site customer
Agile Modeling
40-hour weeks

Short development cycles
Collective ownership
Open workspace
Velocity tracking

Etc.

40-hour Weeks

No one can work a second consecutive week of overtime. Even isolated

overtime used too frequently is a sign of deeper problems that must be
addressed.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Planning Poker

. . .
Institute For

SOFTWARE .
RESEARCH School of Computer Science

Collective Ownership

Every programmer improves any code anywhere in the system at any time if
they see the opportunity.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Kanban Board

institute for
I S SOFTWARE
RESEARCH

Carnegie Mellon University
School of Computer Science 43

Simple Design

“Say everything once and only once”:

At every moment, the design runs all the tests, communicates everything the
programmers want to communicate, contains no duplicate code, and has the

fewest possible classes and methods.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

On-site Customer

A customer sits with the team full-time.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

__E.

Navigator

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Short development cycle

The software development process is organized in a way in which the full
software development cycle—from design phase to implementation phase to
test and deployment phase—is performed within a short timespan, usually
several months or even weeks.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Small Releases

The system is put into production in a few months, before solving the whole
problem. New releases are made often—anywhere from daily to monthly.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Continuous Integration (Cl)

New code is integrated with the current system after no more than a few
hours. When integrating, the system is built from scratch and all tests must
pass or the changes are discarded.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Test-driven development

Programmers write unit tests minute by minute. These tests are collected

and they must all run correctly. Customers write functional tests for the
stories in an iteration.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Open workspace

: /4
! dyf ‘

;&
o) o) e—— s— o] s— —

&, _P . - -
. - ‘l[w

‘ T li
| ’i:’g‘fﬁ' "“{""" "' --a
ot) ’ Ne e
.I ak%*‘t- (1;,.9: :—_"-

t Y‘vm i} ™) r
"%%?rmsn i’:.?
" \f j

institute for Carnegie Mellon University
SOFTWARE .
School of Computer Science

RESEARCH

Solving Software Development Problems with Agile
Practices

1. Requirement changes during the Close relation with customer, short development
development process cycle, small releases, planning poker, Kanban board

2. Scope creep Short development cycle, small releases, planning

poker

3. Architecture erosion Collective ownership, pair programming

4. Under- or overestimation (time and Close relation with customer, planning poker, short
budget), sticking to the plan development cycle, small releases

5. Bringing in new developers (time Collective ownership (pros & cons), planning poker

and effort for their training), steep
learning curve

6. Change of management during the Close relationship with customer
development process

7. Introducing new bugs as you develop 40-hour week, collective ownership, short
software development cycle, small releases, tests, Cl, pair
programming

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

Solving Software Development Problems with Agile

[] *
Practices (contd.)

8. Challenge of communication Close relation with customer

9. Developer turnover Collective ownership (pros & cons), 40-hour week
10. Integration issues Collective ownership

11. Difficulty of tracking bugs Collective ownership, short development cycle,

small releases, Cl, tests

12. Disagreement between developers Close relation with customer

13. Scheduling problems (global team) Close relation with customer

14. “Groupthink” (tendency of Planning poker, pair programming
developers to agree with one
another, common thinking among
them), fear of hurting the feelings of
other developers
15. Challenges with integrating with Collective ownership
legacy code

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

Scrum

54

Customer, team, scrum master

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Scrum Process

DAILY SCRUM
MEETING .

r .
POTENTIALLY
SHIPPABLE
PrRooucT
INCREMENT

24 HOURS

v | [

\

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

Extreme Programming (XP)

Human evolution

XP evolution

57

Extreme Programming (XP)

Release Plan
Manths

Iteration Plan
Weeks

Acceptance Test
Days
Stand Up Meeting

One Day
Pair Negotiation

HOUI’S/

Unit Test

Minutes

Pair Programming
[]

Seconss
Code

institute for Carnegie Mellon University
I S SOF TWARE

School of Computer Science

RESEARCH

XP Practices (subset of Agile!)

e TDD (test-first approach).

* Planning game: 1-3 week iterations, one iteration at a time, customer decides which user stories to use
* Whole team/on-site customer: “customer speaks with one voice.” Customer may be a whole team.

* Small releases, with valuable functionality, to guard against unhappy customers.

* System metaphor is a single shared story of how it works. (Sort of like architecture)

* Simplest thing that possibly works (coding for today)

e Refactor all the time, because you don’t have up-front design before programming.

e Collective ownership. Everyone is responsible for everything. If a programmer sees something she doesn’t like,
she can go change it. Task ownership is individual.

e Pair programming. can code alone for nonproduction code like prototypes
 Continuous Integration. A day of development at most.

e Sustainable pace. 40 hour work weeks.

 Coding standards, Especially since all code can change at all times.

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Universal Credit

CASE STUDY

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

The Twelve Principles of Agile Software Development

Projects are built around motivated individuals, who should be trusted

Face-to-face conversation is the best form of communication (co-location)

Individuals and
interactions

Self-organizing teams

© 0 N o U A W DN PRE

Working software is delivered frequently (weeks rather than months)
Working software is the principal measure of progress

Sustainable development, able to maintain a constant pace

Working

collaboration software

Continuous attention to technical excellence and good design

Simplicity—the art of maximizing the amount of work not done—is essential

Customer satisfaction by rapid delivery of useful software
_ 10. Close, daily cooperation between business people and developers

11. Welcome changing requirements, even late in development

_ 12. Regular adaptation to changing circumstances

Responding Customer

to change

