
Lecture 2: Metrics and
Measurement

17-313: Foundations of Software Engineering
Fall 2022

1

● Slack
○ Please add a profile picture.

○ Ask questions in #general or #technicalsupport. Use threads.

● Homework 1 is released. It is due Thu Sept 8, 11:59 pm (one week!)
○ This is an individual assignment; we will compose groups this week.

○ Get started early, ask for help, and check the #technicalsupport channel; chances are decent
your questions have been asked by others! Office hours will be scheduled..

● Team formation survey is on Canvas. Please fill by TONIGHT!
● Reading for next Tuesday has been posted (Canvas quiz due before class).

● COVID or other health issues?
○ Skip class/recitation; come to OH to claim participation points

2

Administrivia

● 27 other answers in the long tail

3

Survey Results

● 36 more in the long tail

4

What I want to learn

● Use measurements as a decision tool to reduce uncertainty

● Understand difficulty of measurement; discuss validity of measurements
● Provide examples of metrics for software qualities and process

● Understand limitations and dangers of decisions and incentives based on
measurements

5

Learning Goals

Software Engineering

6

Software Engineering: Principles,
practices (technical and non-technical)
for confidently building high-quality
software.

7

What does this mean?
How do we know?

à Measurement and
metrics are key

concerns.

CASE STUDY: AUTONOMOUS VEHICLES

8

9

AV Software is ________________________

10

How can we judge AV software quality (e.g. safety)?

Test coverage

● Amount of code executed
during testing.

● Statement coverage, line
coverage, branch coverage, etc.

● E.g. 75% branch coverage à
3/4 if-else outcomes have been
executed

11

12

Model Accuracy

● Train machine-learning
models on labelled data
(sensor data + ground
truth).

● Compute accuracy on a
separate labelled test set.

● E.g. 90% accuracy implies
that object recognition is
right for 90% of the test
inputs. Source: Peng et al. ESEC/FSE’20

Failure Rate

● Frequency of
crashes/fatalities

● Per 1000 rides, per million
miles, per month (in the
news)

13

Mileage

14
Source: waymo.com/safety (September 2021)

Think of “pros” and “cons” for using various quality metrics to judge AV software.
○ Test coverage

○ Model accuracy

○ Failure rate

○ Mileage

○ Size of codebase

○ Age of codebase

○ Time of most recent change

○ Frequency of code releases

○ Number of contributors

○ Amount of code documentation 15

Activity

MEASUREMENT AND METRICS

16

● Measurement is the empirical, objective assignment of numbers, according
to a rule derived from a model or theory, to attributes of objects or events
with the intent of describing them. – Craner, Bond, “Software Engineering
Metrics: What Do They Measure and How Do We Know?”

● A quantitatively expressed reduction of uncertainty based on one or more
observations. – Hubbard, “How to Measure Anything …”

17

What is Measurement?

● IEEE 1061 definition: “A software quality metric is a function whose inputs are
software data and whose output is a single numerical value that can be
interpreted as the degree to which the software possesses a given attribute
that affects its quality.”

● Metrics have been proposed for many quality attributes; may define own
metrics

18

Software Quality Metrics

What software qualities do we care about? (examples)

● Scalability
● Security
● Extensibility
● Documentation
● Performance
● Consistency
● Portability

● Installability
● Maintainability
● Functionality (e.g., data

integrity)
● Availability
● Ease of use

19

What process qualities do we care about? (examples)

● On-time release
● Development speed
● Meeting efficiency
● Conformance to processes
● Time spent on rework
● Reliability of predictions
● Fairness in decision making

● Measure time, costs,
actions, resources, and
quality of work packages;
compare with predictions

● Use information from issue
trackers, communication
networks, team structures,
etc…

20

● If X is something we care about, then X, by definition, must be detectable.
○ How could we care about things like “quality,” “risk,” “security,” or “public image” if these things

were totally undetectable, directly or indirectly?

○ If we have reason to care about some unknown quantity, it is because we think it
corresponds to desirable or undesirable results in some way.

● If X is detectable, then it must be detectable in some amount.
○ If you can observe a thing at all, you can observe more of it or less of it

● If we can observe it in some amount, then it must be measurable.

21

Everything is measurable

Douglas Hubbard, How to Measure Anything, 2010

EXAMPLES:
CODE COMPLEXITY

24

● Easy to measure

25

Lines of Code
> wc –l file1 file2…

LOC projects
450 Expression Evaluator

2,000 Sudoku
100,000 Apache Maven
500,000 Git

3,000,000 MySQL
15,000,000 gcc
50,000.000 Windows 10

2,000,000,000 Google (MonoRepo)

● Ignore comments and empty lines

● Ignore lines < 2 characters
● Pretty print source code first

● Count statements (logical lines of code)
● See also: cloc

26

Normalizing Lines of Code

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}

Language Statement factor
(productivity)

Line factor

C 1 1
C++ 2.5 1
Fortran 2 0.8
Java 2.5 1.5
Perl 6 6
Smalltalk 6 6.25
Python 6 6.5

27

Normalization per Language

Source: “Code Complete: A Practical Handbook of Software Construction“, S. McConnell, Microsoft Press (2004)
and http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html u.a.

http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

● Introduced by Maurice Howard Halstead in 1977

● Halstead Volume =
number of operators/operands *
log2(number of distinct operators/operands)

● Approximates size of elements and vocabulary

28

Halstead Volume

● main() {
int a, b, c, avg;
scanf("%d %d %d", &a, &b, &c);
avg = (a + b + c) / 3;
printf("avg = %d", avg);

}

29

Halstead Volume - Example

Operators/Operands: main, (), {}, int, a, b, c, avg,
scanf, (), "…", &, a, &, b, &, c, avg, =, a, +, b, +, c,

(), /, 3, printf, (), "…", avg

● Proposed by McCabe 1976

● Based on control flow graph, measures linearly
independent paths through a program

○ ~= number of decisions

○ Number of test cases needed to achieve branch
coverage

30

Cyclomatic Complexity
if (c1) {

f1();
} else {

f2();
}
if (c2) {

f3();
} else {

f4();
}

M = edges of CFG – nodes of CFG + 2*connected components

“For each module, either limit cyclomatic complexity to [X] or
provide a written explanation of why the limit was exceeded.”

– NIST Structured Testing methodology

● Number of Methods per Class

● Depth of Inheritance Tree
● Number of Child Classes

● Coupling between Object Classes
● Calls to Methods in Unrelated Classes

● …

31

Object-Oriented Metrics

● Scale: the type of data being measured.

● The scale dictates what sorts of analysis/arithmetic is legitimate or
meaningful.

● Your options are:
○ Nominal: categories

○ Ordinal: order, but no magnitude.

○ Interval: order, magnitude, but no zero.

○ Ratio: Order, magnitude, and zero.

○ Absolute: special case of ratio.

32

Measurement scales

● Entities classified with respect to a certain attribute. Categories are jointly
exhaustive and mutually exclusive.

○ No implied order between categories!

● Categories can be represented by labels or numbers; however, they do not
represent a magnitude, arithmetic operation have no meaning.

● Can be compared for identity or distinction, and measurements can be
obtained by counting the frequencies in each category. Data can also be
aggregated.

33

Nominal/categorical scale

Entity Attribute Categories

Application Purpose E-commerce, CRM, Finance

Application Language Java, Python, C++, C#

Fault Source assignment, checking, algorithm, function, interface,
timing

● Ordered categories: maps a measured attribute to an ordered set of values, but
no information about the magnitude of the differences between elements.

● Measurements can be represented by labels or numbers, BUT: if numbers are
used, they do not represent a magnitude.

○ Honestly, try not to do that. It eliminates temptation.

● You cannot: add, subtract, perform averages, etc (arithmetic operations are out).
● You can: compare with operators (like “less than” or “greater than”), create ranks

for the purposes of rank correlations (Spearman’s coefficient, Kendall’s τ).

34

Ordinal scale

Entity Attribute Values

Application Complexity Very Low, Low, Average, High, Very High

Fault Severity 1 – Cosmetic, 2 – Moderate, 3 – Major, 4 – Critical

● Has order (like ordinal scale) and magnitude.
○ The intervals between two consecutive integers represent equal amounts of the attribute

being measured.

● Does NOT have a zero: 0 is an arbitrary point, and doesn’t correspond to the
absence of a quantity.

● Most arithmetic (addition, subtraction) is OK, as are mean and dispersion
measurements, as are Pearson correlations. Ratios are not meaningful.

○ Ex: The temperature yesterday was 32 C, and today is 16 C. Was it twice as warm yesterday?

● Incremental variables (quantity as of today – quantity at an earlier time) and
preferences are commonly measured in interval scales.

35

Interval scale

● An interval scale that has a true zero that actually represents the absence of
the quantity being measured.

● All arithmetic is meaningful.

● Absolute scale is a special case, measurement simply made by counting the
number of elements in the object.

○ Takes the form “number of occurrences of X in the entity.”

36

Ratio scale

Entity Attribute Values

Project Effort Real numbers

Software Complexity Cyclomatic complexity

37

Summary of scales

WHY MEASURE?

38

● Fund project?

● More testing?
● Fast enough? Secure enough?

● Code quality sufficient?
● Which feature to focus on?

● Developer bonus?

● Time and cost estimation? Predictions reliable?

39

Measurement for Decision Making

40

Trend analyses

● Monitor many projects or many modules, get typical values for metrics

● Report deviations

41

Benchmarking against standards

https://semmle.com/insights/

https://semmle.com/insights/

Antipatterns in effort estimation

● IBM in the 60’s: Would account in
“person-months”
e.g. Team of 2 working 3 months =
6 person-months

● LoC ~ Person-months ~ $$$
● Brooks: “Adding manpower to a late

software project makes it later.”

42

MEASUREMENT IS DIFFICULT

43

44

The streetlight effect

● A known observational bias.
● People tend to look for

something only where it’s
easiest to do so.

○ If you drop your keys at
night, you’ll tend to look for
it under streetlights.

45

● Bad statistics: A basic misunderstanding of
measurement theory and what is being
measured.

● Bad decisions: The incorrect use of
measurement data, leading to unintended
side effects.

● Bad incentives: Disregard for the human
factors, or how the cultural change of taking
measurements will affect people.

46

What could possibly go wrong?

To infer causation:
○ Provide a theory (from domain knowledge, independent of data)

○ Show correlation

○ Demonstrate ability to predict new cases (replicate/validate)

47

Making inferences http://xkcd.com/552/

Spurious Correlations

48

○ If you look only at the coffee consumption → cancer relationship, you can get very misleading
results

○ Smoking is a confounder

49

Confounding variables

Coffee
consumption

Smoking

Cancer

Associations

Causal relationship

50

“We found that there is a low to moderate correlation between coverage and
effectiveness when the number of test cases in the suite is controlled for.”

● Construct validity – Are we measuring what we intended to measure?

● Internal validity – The extent to which the measurement can be used to
explain some other characteristic of the entity being measured

● External validity – Concerns the generalization of the findings to contexts and
environments, other than the one studied

51

Measurements validity

52

Letter size: 44” (ish)

● Extent to which a measurement yields similar results when applied multiple
times

● Goal is to reduce uncertainty, increase consistency

● Example: Performance
○ Time, memory usage

○ Cache misses, I/O operations, instruction execution count, etc.

● Law of large numbers
○ Taking multiple measurements to reduce error

○ Trade-off with cost

53

Measurements reliability

54

● Measure whatever can
be easily measured.

● Disregard that which cannot be measured easily.

● Presume that which cannot be measured easily is not important.
● Presume that which cannot be measured easily does not exist.

55

McNamara fallacy

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-
numbers-in-education/

● There seems to be a general misunderstanding to the effect that a
mathematical model cannot be undertaken until every constant and
functional relationship is known to high accuracy. This often leads to the
omission of admittedly highly significant factors (most of the “intangibles”
influences on decisions) because these are unmeasured or unmeasurable.
To omit such variables is equivalent to saying that they have zero effect...
Probably the only value known to be wrong…

○ J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

56

The McNamara Fallacy

● Metrics
○ Time to perform task?

○ App load time?

○ Discovering menu options?

● Measurements
○ Amount of documentation

○ Stars on app store

○ Telemetry

○ Surveys, interviews, controlled
experiments, expert judgment

○ A/B testing

57

Discussion: Measuring usability

METRICS AND INCENTIVES

58

http://dilbert.com/strips/comic/1995-11-13/

Goodhart’s law: “When a measure becomes a
target, it ceases to be a good measure.”

59

● Lines of code per day?
○ Industry average 10-50 lines/day

○ Debugging + rework ca. 50% of time

● Function/object/application points per month

● Bugs fixed?
● Milestones reached?

60

Productivity Metrics

● What happens when developer bonuses are based on
○ Lines of code per day?

○ Amount of documentation written?

○ Low number of reported bugs in their code?

○ Low number of open bugs in their code?

○ High number of fixed bugs?

○ Accuracy of time estimates?

61

Incentivizing Productivity

● Most software metrics are controversial
○ Usually only plausibility arguments, rarely rigorously validated

○ Cyclomatic complexity was repeatedly refuted and is still used

○ “Similar to the attempt of measuring the intelligence of a person in terms of the weight or
circumference of the brain”

● Use carefully!

● Code size dominates many metrics

● Avoid claims about human factors (e.g., readability) and quality, unless
validated

● Calibrate metrics in project history and other projects

● Metrics can be gamed; you get what you measure 62

Warning

● Measurement is difficult but important for decision making

● Software metrics are easy to measure but hard to interpret, validity often not
established

● Many metrics exist, often composed; pick or design suitable metrics if
needed

● Careful in use: monitoring vs incentives

● Strategies beyond metrics

63

Summary

● What properties do we care about, and how do we measure it?

● What is being measured? Does it (to what degree) capture the thing you care
about? What are its limitations?

● How should it be incorporated into process?
● What are potentially negative side effects or incentives?

64

Questions to consider (HW1)

