
Lecture 4: Code Archaeology
17-313: Foundations of Software Engineering

Rohan Padhye, Michael Hilton, Chris Timperley, and Daye Nam

1

● HW1 is due tonight at 11:59pm
○ don’t expect a reply on Slack outside of working hours

● HW2 will be released tomorrow
● Update on Team Formation

● …

2

Administrivia

● Understand and scope the task of taking on and understanding a new and
complex piece of existing software

● Appreciate the importance of configuring an effective IDE

● Contrast different types of code execution environments including local,
remote, application, and libraries

● Enumerate both static and dynamic strategies for understanding and
modifying a new codebase

3

Learning Goals

4

Context: big ole pile of code

… do something with it!

You cannot understand
the entire system!

5

6

Challenge: How do I tackle this codebase?

● Leverage your previous experiences (languages, technologies, patterns)

● Consult documentation, whitepapers, experts, code owners
● Follow best practices to build a working model of the system

7

Challenge: How do I tackle this codebase?

● Working Effectively with Legacy Code.
Michael C. Feathers. 2004.

● Re-Engineering Legacy Software.
Chris Birchall. 2016.

8

Bad news: There are few helpful resources!

9

Why? Because of the Curse of Knowledge

● Goal: develop and test a working model or set of working
hypotheses about how (some part of) a system works

● Working model: an understanding of the pieces of the
system (components), and the way they interact
(connections)

● Focus: Observation, probes, and hypothesis testing
○ helpful tools and techniques!

10

Today: How to tackle codebases

11

Live Demonstration: sismics/Reader

https://github.com/CMU-313/reader

https://github.com/CMU-313/reader

12

Observation: Software is full of patterns

● File structure

● System architecture
● Code structure

● Names
● …

13

Observation: Software is massively redundant

● There’s always something to
copy/use as a starting point!

14

Observation: Code must run to do stuff!

15

Observation: If code runs, it must have a beginning…

16

Observation: If code runs, it must exist…

The Beginning: Entry Points

● Locally installed programs: run cmd, OS launch, I/O events, etc.

● Local applications in dev: build + run, test, deploy (e.g., docker)

● Web apps server-side: Browser sends HTTP request (GET/POST)

● Web apps client-side: Browser runs JavaScript

Code must exist. But where?

● Locally installed programs: run cmd, OS launch, I/O events, etc.
○ Binaries (machine code) on your computer

● Local applications in dev: build + run, test, deploy (e.g., docker)
○ Source code in repository (+ dependencies)

● Web apps server-side: Browser sends HTTP request (e.g., GET, POST)
○ Code runs remotely (you can only observe outputs)

● Web apps client-side: Browser runs JavaScript
○ Source code is downloaded and run locally (see: browser dev tools!)

19

Can running code be Probed/Understood/Edited?

Transparent OpaqueTranslucent

Source code built locally Server-side apps running remotelyBinaries running locally
Open source Closed source Open source Closed source

(P+U) (P) (U) -(P+U+E)

Creating a model
of unfamiliar code

20

Source code built locally

Information Gathering

● Basic needs:
○ Code/file search and navigation

○ Code editing (probes)

○ Execution of code, tests

○ Observation of output (observation)

● Many choices here on tools! Depends on circumstance.
○ grep/find/etc. Having a command on Unix tools is invaluable

○ A decent IDE

○ Debugger

○ Test frameworks + coverage reports

○ Google (or your favorite web search engine)

At the command line: grep and
find!

(Do a web search for tutorials)

22

Static Information Gathering: Use an IDE!
Real software is too complex to keep in your head

Consider documentation and tutorials judiciously

● Great for discovering entry points!
● Can teach you about general structure,

architecture (more on this later in the
semester)

● As you gain experience, you will recognize
more of these, and you will immediately
know something about how the program
works

● Also: discussion boards; issue trackers

24

1. Build it.

2. Run it.
3. Change it.

4. Run it again.
5. How did the behavior change?

Dynamic Information Gathering
Change helps to inform and refine mental models

Probes: Observe, control or “lightly”
manipulate execution
● print(“this code is running!”)

● Structured logging
● Debuggers

○ Breakpoint, eval, step through / step over

○ (Some tools even support remote debugging)

● Delete debugging

● Firefox Developer Tools

Step 0: sanity check basic model + hypotheses

● Confirm that you can build and run the code.
○ Ideally both using the tests provided, and by hand.

● Confirm that the code you are running is the code you built
● Confirm that you can make an externally visible change

● How? Where? Starting points:
○ Run an existing test, change it

○ Write a new test

○ Change the code, write or rerun a test that should notice the change

● Update README and docs
○ or, better: use a Developer Wiki

○ use Mermaid for diagrams

● Collaborate with others

● Include negative results, too!

28

Document and share your findings!

29

Let’s try some of these techniques again…

https://github.com/CMU-313/reader

https://github.com/CMU-313/reader

