
Lecture 5: Intro To Process
Milestones, Estimation, Planning

17-313 Fall 2022

2



Learning Goals

• Recognize the importance of process
• Understand the difficulty of measuring progress
• Identify why software development has project characteristics
• Use milestones for planning and progress measurement
• Understand backlogs and user stories
• Know your team!

3



Administrivia
• HW1 needs link to issue/PR. Please submit if not yet done.
• HW2 released on course website
• Team assignment. Let us know if you don’t know your team!
• Two deadlines (Sep 22nd and 27th) and three milestones
• HIGHLY recommend completing first milestone this week

• Create issue by Sep 15th to get the ball rolling
• Soft deadline for getting feedback from staff
• Fine to iterate/adapt through implementation (add comments to issue)

• Extra credit: Team activity
• Create private channel on Slack
• Invite your TA mentors to claim credit

4



Software Process
“The set of activities and associated results that produce a software product”

7

Sommerville, SE, ed. 8



8



How to develop software?

1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

9



10

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%



11

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Development
(coding, testing, making progress towards goals)



12

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Addressing Inefficiencies

Productive Development
(coding, testing, making progress towards goals)



Your manager asks you to follow a process
• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes
• Track all reported bugs
• Review requirements and code
• Break down development into smaller tasks and schedule and monitor them
• Planning and conducting quality assurance 
• Have daily status meetings
• Use Docker containers to push code between developers and operation

13



14

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Addressing Inefficiencies

Process: Cost and Time estimates, Writing Requirements, Design, 
Change Management, Quality Assurance Plan, 

Development and Integration Plan

Productive Development
(coding, testing, making progress towards goals)



15

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Process

Productive Development
(coding, testing, making progress towards goals)

Fighting Fires / Addressing Inefficiencies



Example process issues
• Change Control: Mid-project informal agreement to changes suggested by 

customer or manager. Project scope expands 25-50%
• Quality Assurance: Late detection of requirements and design issues. Test-

debug-reimplement cycle limits development of new features. Release with 
known defects.
• Defect Tracking: Bug reports collected informally, forgotten
• System Integration: Integration of independently developed components at 

the very end of the project. Interfaces out of sync.
• Source Code Control: Accidentally overwritten changes, lost work.
• Scheduling: When project is behind, developers are asked weekly for new 

estimates.

16



17

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%
Process

Hypothesis: Process 
increases flexibility and 
efficiency

Ideal Curve: Upfront 
investment for later 
greater returns

Productive Development
(coding, testing, making progress towards goals)

Fighting Fires / Addressing Inefficiencies



18



Planning

19



20

Time estimation

https://xkcd.com/612/



Activity: Estimate Time

Task A: Simple web version of the 
Monopoly board game with 
Pittsburgh street names

Team: just you

Task B: Bank smartphone app 
Team: you with team of 4 developers, 
one experienced with iPhone apps, 
one with background in security

* Estimate in 8h days (20 work days
in a month, 220 per year)

My Task A estimate: ___
My Task B estimate: ___

Other Task A estimate: __
Other Task B estimate: __

Other Task A estimate: __
Other Task B estimate: __

21



Revise Time Estimate

• Do you have comparable experience to base an estimate off of? 
• How much design do you need for each task? 
• Break down the task into ~5 smaller tasks and estimate them. 
• Revise your overall estimate if necessary

22



23



24



25

π



Measuring Progress?

• “I’m almost done with the app. The frontend is almost fully 
implemented. The backend is fully finished except for the one stupid 
bug that keeps crashing the server. I only need to find the one stupid 
bug, but that can probably be done in an afternoon. We should be 
ready to release next week.”

26



Measuring Progress?

• Developer judgment: x% done
• Lines of code?
• Functionality?
• Quality?

27





Milestones and deliverables make progress observable

Milestone: clear end point of a (sub)tasks
• For project manager
• Reports, prototypes, completed subprojects
• "80% done" not a suitable mile stone

Deliverable: Result for customer
• Similar to milestone, but for customers
• Reports, prototypes, completed subsystems

29



Waterfall model was the original software process

30

Waterfall diagram CC-BY 3.0 Paulsmith99 at en.wikipedia

https://en.wikipedia.org/wiki/User:Paulsmith99
https://en.wikipedia.org/


… akin to processes pioneered in mass 
manufacturing (e.g., by Ford)

31



Lean production adapts to variable demand

Toyota Production System (TPS)
Build only what is needed, only when it is needed. 
Use the “pull” system to avoid overproduction. (Kanban) 
Stop to fix problems, to get quality right from the start (Jidoka)
Workers are multi-skilled and understand the whole process; take ownership

Lots of software buzzwords invented recently build on these ideas
Just-in-time, DevOps, Shift-Left

32

Taiichi Ohno

See also: “The machine that changed the world” by James P Womack et al. The Free Press, 2007.



33

US vehicle sales market share; 1961—2016 (source: knoema.com)



34



Scrum
(Only a brief intro)

35



Elements of Scrum

36

Products:
Product Backlog
Sprint Backlog

Process:
Sprint Planning Meeting
Daily Scrum Meeting
Sprint Retrospective
Sprint Review Meeting



Backlogs

The product backlog is all the features for the product
The sprint backlog is all the features that will be worked on for that 
sprint. These should be broken down into discrete tasks:

Fine-grained
Estimated
Assigned to individual team members
Acceptance criteria should be defined

User Stories are often used

37



Kanban boards

38



Scrum Meetings

Sprint Planning Meeting
Entire Team decides together what to tackle for that sprint

Daily Scrum Meeting
Quick Meeting to touch base on :

What have I done? What am I doing next? What am I stuck on/need help?

Sprint Retrospective 
Review sprint process

Sprint Review Meeting
Review Product

39



User Stories

40Source: https://www.flickr.com/photos/jakuza/2728096478



User Stories

41
Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/



User story cards (3”x5”)

“As a [role], I want [function], so that [value]”

42



Exercise

43

https://dribbble.com/shots/12512417-Scooter-Rental-App-Design



How to evaluate user story?

44

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/



Independent

• Schedule in any order.
• Not overlapping in concept 
• Not always possible

45



Negotiable

• Details to be negotiated during development 
• Good Story captures the essence, not the details 

46



Valuable

• This story needs to have value to someone (hopefully the customer) 
• Especially relevant to splitting up issues 

47



Estimable

• Helps keep the size small
• Ensure we negotiated correctly 
• “Plans are nothing, planning is everything” -Dwight D. Eisenhower 

48



Small

• Fit on 3x5 card
• At most two person-weeks of work
• Too big == unable to estimate 

49



Testable

• Ensures understanding of task 
• We know when we can mark task “Done” 
• Unable to test == do not understand 

50



Activity

51



Next up: Teams

52


