
Lecture 9:  
Software Quality in Practice
17-313: Foundations of Software Engineering
Rohan Padhye, Michael Hilton, Chris Timperley, and Daye Nam

Administrivia
• Missing lecture policy (see Syllabus on website)

• HW2: In-person presentation during this week’s recitation

• HW3A: plan due on Thursday

• Implementation due October 6th

• Reflection due October 13th

• Midterm is on October 11th

• review will take place in the week before the midterm

2

Learning Goals
• Understand the concepts of software quality and technical debt

• Reflect on personal experiences of technical debt

• Learn best practices for proactively ensuring quality

• Design an explicit QA process for your project

• Learn techniques for reactively dealing with quality problems

3

Software Quality

4

Internal Quality

• Is the code well structured?

• Is the code understandable?

• How well tested is the code?

5

External Quality

• Does the software crash?

• Does it meet the requirements?

• Is the UI well designed?

How would you rate Teedy?

6

How did we get here?

Software entropy

8

“As an evolving program is continually changed, its complexity, reflecting
deteriorating structure, increases unless work is done to maintain or reduce it.”

 
Meir Manny Lehman

“Now, here, you see, it takes all the running you
can do just to keep in the same place. If you
want to get somewhere else, you must run at
least twice as fast!” 
 
Through the Looking Glass

Technical debt

9

https://martinfowler.com/bliki/TechnicalDebt.html

A better analogy: Pollution

10

https://www.airnow.gov/aqi/aqi-basics

Internal quality makes it easier to add features

11

High internal quality is an investment

12

What causes technical debt?

13

What causes technical debt?
• Tightly-coupled components

• Poorly-specified requirements

• Business pressure

• Lack of process

• Lack of documentation

• Lack of automated testing

• Lack of knowledge

• Lack of ownership

• Delayed refactoring

• Multiple, long-lived development
branches

• ...

14

Not all technical debt is the same

15

Reckless Prudent

Deliberate “We don’t have time for
design”

“We must ship now and deal
with consequences (later)”

Inadvertent “What’s layering?” “Now we know how we
should have done it”

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

CREATES TECHNICAL
DEBT

Bad: Too much technical debt
• Bad code can be demoralizing

• Conversations with the client become awkward

• Team infighting

• Atrophied skills

• Turnover and attrition

• …

17

When should we reduce technical debt?

Dealing with technical debt: Fixing broken windows

19

Alternative: Putting out fires is expensive!

20

Analogy: Cleaning your dryer

21

How can we avoid technical debt?

Reflection: Homework 2

23

Common Anti-Patterns
• Not having a QA process! Or no-one follows it

24

Common Anti-Patterns
• Not having a QA process! Or no-one follows it

• Bad version control practices

• Everyone commits to the main branch

• Long-lived feature branches

• Huge PRs

25

Common Anti-Patterns
• Not having a QA process! Or no-one follows it

• Bad version control practices

• Slow and encumbering QA processes

• changes take forever to get merged

• time could be better spent on new features

26

Common Anti-Patterns
• Not having a QA process! Or no-one follows it

• Bad version control practices

• Slow and encumbering QA processes

• Reliance on repetitive manual labor

• focused on superficial problems rather than structural ones

• results may vary (e.g., manual testing)

• mistakes will happen!

27

Case Study: Knight Capital

In laymen’s terms, Knight Capital Group realized a $460 million loss in 45-minutes.
Remember, Knight only has $365 million in cash and equivalents. In 45-minutes Knight
went from being the largest trader in US equities and a major market maker in the
NYSE and NASDAQ to bankrupt.

Good: Trunk-Based Development
Small changes are easier to develop, review, and integrate

Tip: Squash and Merge
Every commit on main should represent a meaningful change

Good: Continuous Integration and Deployment
Find and fix mistakes as early as possible when they’re easier to address

Good: Automate as much as possible!
Humans are expensive; compute time is cheap

Good: Let humans review the hard stuff!
• Good: Is this code understandable? Is

this going to be a problem to maintain? Is
this going to constrain us in the future? Is
there a more elegant / simpler / more
efficient solution?

• Bad: Reviewers shouldn’t run the code or
tests or make any changes

• Bad: Reviewing superficial changes

33

X

Good: Write automated tests
Manual testing is unreliable and unsustainable

Automated Testing

+ Reproducible

+ Some upfront effort

+ Zero marginal effort

+ Runs on every commit

+ Finds regressions!

Manual Testing

- Unreproducible

- Low upfront effort

- High marginal effort

- Runs when you remember

- Unsustainable

Tips for Effective CI/CD
• Your CI pipeline should run quickly

Tips for Effective CI/CD
• Your CI pipeline should run quickly

• Your CI pipeline should run on every change

• Only bother the reviewer once all checks pass

Tips for Effective CI/CD
• Your CI pipeline should run quickly

• Your CI pipeline should run on every change

• Your main branch should always be green

• Otherwise CI loses its value!

Tips for Effective CI/CD
• Your CI pipeline should run quickly

• Your CI pipeline should run on every change

• Your main branch should always be green

• Your CI shouldn’t replace your local environment

• you don’t have to re-run every test

Activity: Let’s design a good QA process

39

• Work in teams of two or three

• Upload to Gradescope

When it all goes wrong…

Diagnose the problem with a checklist
Have you recompiled the project?

Have you pushed/pulled all of the changes?

Have you tried destroying the database?

Can you reproduce the problem on another machine?

Can you find a previous version of the project that worked?

Does the query sent by the frontend match the backend’s expectations?

Are names spelled exactly the same? Beware of stringly types!

Does the database contain your changes?

…

Collect evidence and report the issue
Log files, stack traces, terminal outputs, examples, screenshots

Write a test to reliably reproduce the failure
Now your teammates can help out, too!

Problem: What code caused the bug?

44

Starting Point: Use the Stack Trace

Defects cause program state to be infected

Locate the defect: Git History
Defects tend to be located in recently changed files

Locate the defect: Interactive Debugging

See: https://github.com/CMU-313/Teedy/wiki/Using-the-Debugger-via-VSCode

Locate the defect: Assertions
Reduce the distance between the fault and failure

public static int findMax(int v[]) {
 int max = Integer.MIN_VALUE;

 // Precondition: v[] is not empty
 assert v.length > 0 : "v[] is empty";
 // Precondition: max <= v[i] for every i
 for (int i = 0; i < v.length; i++)
 assert max <= v[i] : "Found value < MIN_VALUE";

 // Locate the real maximum value
 for (int i = 0; i < v.length; i++)
 if (v[i] > max)
 max = v[i];

 // Postcondition: max >= v[i] for every i
 for (int i = 0; i < v.length; i++)
 assert max >= v[i] : "Found value > MIN_VALUE";
 return max;
}

Detect illegal program states

Write smaller unit tests as failure hypotheses
Go from large integration tests to small unit tests

Write a patch and use your tests to validate
If your tests pass, you’ve fixed the bug *

Takeaways
• Technical debt is a fact of life

• It’s easier to preemptively avoid issues and maintain quality than to
accumulate technical debt and address it later

• But you can’t avoid every issue! We can use techniques to diagnose, debug,
and fix those issues that do occur

52

