
Introduction to 
Software Architecture

17-313 Fall 2022



Administrivia

○ HW3A (planning) due tonight (Sep 29)
■ 3B (artifacts) due Oct 6

● Make sure to have automated tests!
■ 3C (reflection) due Oct 13

○ HW2 presentations this week in recitation



Learning Goals

● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different abstraction 

levels
● Distinguish software architecture from (object-oriented) software design
● Use notation and views to describe the architecture suitable to the 

purpose
● Document architectures clearly, without ambiguity

3



Views and Abstraction



5



6



7



8



General fertility rate per 1,000 population by Allegheny County municipality, 2017
Source: https://www.alleghenycounty.us/



1
0

Source: Pittsburgh Zoning Map (https://gis.pittsburghpa.gov/pghzoning/) 



Abstracted views focus on conveying specific 
information
● They have a well-defined purpose
● Show only necessary information
● Abstract away unnecessary details
● Use legends/annotations to remove ambiguity
● Multiple views of the same object tell a larger story



Software Architecture



Case Study: Autonomous Vehicle Software

1
3



Case Study: Apollo

Check out the “side pass” feature from the video:
https://www.youtube.com/watch?v=BXNDUtNZdM4

Source: https://github.com/ApolloAuto/apollo

Doxygen: https://hidetoshi-furukawa.github.io/apollo-
doxygen/index.html

1
4

https://www.youtube.com/watch?v=BXNDUtNZdM4
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html


Apollo Software Architecture

1
5

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md



Apollo Hardware Architecture

1
6

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md



Apollo Hardware/Vehicle Overview

1
7

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md



Apollo Perception Module

1
8



Apollo ML Models

1
9

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex 
Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063



Apollo Software Stack

2
0

Source: https://github.com/ApolloAuto/



Feature Evolution (Software Stack View)

2
1

Source: https://github.com/ApolloAuto/apollo



Software Architecture

The software architecture of a program or computing system 
is the structure or structures of the system, which 
comprise software elements, the externally visible 
properties of those elements, and the relationships among 
them.

[Bass et al. 2003]

2
2

Note: this definition is ambivalent to 
whether the architecture is known, or 

whether it’s any good!



Software Design vs. Architecture



Levels of Abstraction

● Requirements
○ high-level “what” needs to be done

● Architecture (High-level design)
○ high-level “how”, mid-level “what”

● OO-Design (Low-level design, e.g. design patterns)
○ mid-level “how”, low-level “what”

● Code
○ low-level “how”



Design vs. Architecture

Design Questions

● How do I add a menu item in Eclipse?

● How can I make it easy to add menu 
items in Eclipse?

● What lock protects this data?

● How does Google rank pages?

● What encoder should I use for secure 
communication?

● What is the interface between 
objects?

Architectural Questions

● How do I extend Eclipse with a 
plugin?

● What threads exist and how do they 
coordinate?

● How does Google scale to billions of 
hits per day?

● Where should I put my firewalls?

● What is the interface between 
subsystems?

2
5



Objects

2
6

Model



Design Patterns

2
7

Model
/ Subject

View

Controller

Factory

Observer

Command



Design Patterns

2
8

Model
/ Subject

View

Controller

Factory

Observer

Command



Design Patterns

2
9

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/



Architecture

3
0

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/



Architecture

3
1

Model
/ Subject

View

Controller

Factory

Observer

Command



Architecture

3
2



Why Document Architecture?

● Blueprint for the system
○ Artifact for early analysis
○ Primary carrier of quality attributes
○ Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20 years from today
○ As long as the system is built, maintained, and evolved according to its documented 

architecture

● Support traceability.

3
4



Views and Purposes

● Every view should align with a purpose
● Views should only represent information relevant to that purpose

○ Abstract away other details
○ Annotate view to guide understanding where needed

● Different views are suitable for different reasoning aspects (different 
quality goals), e.g.,

○ Performance
○ Extensibility
○ Security
○ Scalability
○ …

3
5



Common Views in Documenting Software 
Architecture
● Static View

○ Modules (subsystems, structures)
and their relations (dependencies, …)

● Dynamic View
○ Components (processes, runnable entities) and connectors (messages, data flow, …)

● Physical View (Deployment)
○ Hardware structures and their connections

3
6



Common Software Architectures



1. Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example:
Compilers



2. Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



3. Event-Driven Architecture



Example: HTML DOM + JavaScript



4. Blackboard Architecture

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



5. Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: Internet Protocol Suite



Guidelines for selecting a notation

● Suitable for purpose
● Often visual for compact representation
● Usually boxes and arrows
● UML possible (semi-formal), but possibly constraining

○ Note the different abstraction level – Subsystems or processes, not classes or objects
● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

○ Each view of architecture should fit on a page
○ Use hierarchy

4
6



Next Up

● Microservices


