
Collaborative Development: 
Documentation & Testing

17-313, Foundations of Software Engineering, Fall 2022

Administrivia

● Homework 3B due tonight (October 6th)

● Homework 3C (Reflection) due October 13th

● Midterm next Tuesday, October 11th (in class, regular timing)

● review session during recitation this week (come prepared)

● any questions on the previous midterm questions – bring them to recitation to discuss as

a class

● cheatsheet: you can bring a single page of notes to the exam

● Teamwork Survey

Learning Goals

● Examine how documentation and testing can be used to aid collaborative
development across teams

● Reason about different testing approaches and their associated tradeoffs

● Learn how testability affects development and how it can be improved

Previously: Microservices

Challenge: Communication and Coordination

May interact with
many other services

Located in a different
physical location

You might have a lot of microservices!

Integration Woes in Practice: Teedy

● Problems when integrating the frontend and backend?

How can we avoid these problems?

Architecture diagrams give a big picture view

Code-Level API Documentation

RESTful APIs: Nouns and Verbs

https://www.infoq.com/articles/rest-introduction

https://www.infoq.com/articles/rest-introduction

REST is used in Client–Server Architectures, too

REST in Action: Teedy

REST in Action: Teedy

How can we enable collaborative design?

● Can we allow all teams to work in
parallel without blocking on one
another?

● How do service providers and
consumers know what to
implement and interact with?

API Documentation: OpenAPI (Swagger)

https://swagger.io

https://swagger.io

Swagger for Real: Stripe

https://stripe.com/docs/api

https://github.com/stripe/openapi

http://www.apple.com
https://stripe.com/docs/api
https://github.com/stripe/openapi

Exercise: Let’s Document Teedy

Collaborative Design via Documentation

● Design: OpenAPI docs, …

● Discuss: Issue Tracker, Meetings, …

● Refine: Pull Requests

● Repeat

Collaborative Development via Testing

● Catch bugs before they occur in production

● Gain confidence in the implementation

● Drive the development process

● enable parallel development (chicken and egg problem!)

● identify ambiguities in the design; find bugs in our ideas

● encode assumptions and expectations

● living, executable documentation

● …

How should we test our systems?

Recap: Avoid manual testing

Automated Testing

+ Reproducible

+ Some upfront effort

+ Zero marginal effort

+ Runs on every commit

+ Finds regressions!

Manual Testing

- Unreproducible

- Low upfront effort

- High marginal effort

- Runs when you remember

- Unsustainable

End-to-End Testing (E2E)

https://www.selenium.dev

End-to-end tests are fragile

https://www.bbc.com/news/uk-41890165

Guess I’ll rewrite the test suite.

End-to-end tests can be difficult to automate

● We need to maintain a test environment

○ We don’t run end-to-end tests in production

● Harder to run tests in parallel

○ Tests might affect one another

○ Race conditions

○ Sequential test execution for idempotency

● Software might only run on certain
machines

○ Licensed third-party dependencies

https://www.alamy.com/stock-photo-vector-isometric-low-poly-movie-set-131706020.html

End-to-end tests are slow and expensive

● License fees

● Longer start-up, tear-down, and execution times

● Consumes a lot of resources

● Slower release velocity

https://globalnews.ca/news/4208975/scientists-transfer-memory-snail/

https://globalnews.ca/news/4208975/scientists-transfer-memory-snail/

End-to-end tests have high coverage but poor test isolation

● Does not isolate individual components

● Makes it harder to debug

● Redundancy between tests (e.g., initialization, route forwarding, …)

In E2E tests, the entire system is the system under test (SUT)

What is a unit test?

Beware of Testing Definitions!

A simple version of the Test Pyramid

https://semaphoreci.com/blog/testing-pyramid

Brittle, Slow, Expensive,
Imprecise

Fast, Cheap, Precise

Testing in the Wild: Teedy

https://github.com/CMU-313/Teedy

https://github.com/CMU-313/Teedy

Testing in the Wild: Spotify

https://engineering.atspotify.com/2018/01/testing-of-microservices

https://engineering.atspotify.com/2018/01/testing-of-microservices/

Testing in the Wild: Robots

Testing in the Wild: Bitcoin

https://github.com/bitcoin/bitcoin

https://github.com/bitcoin/bitcoin

Testability: How difficult is it to test the system?

Effort required to provide input to, extract output from, and check the behavior
of the system under test.

● Test efficiency: effort required to provide input and execute SUT

○ How hard is to setup the SUT? How isolated is it?

○ What inputs are required by the SUT? How hard is to produce them?

● Test effectiveness: effort required to collect outputs and check correctness

○ What information do we need to determine pass/fail? (Related to Oracle problem)

○ How hard is it to collect that information?

○ Non-determinism

● Accidental vs Inherent: is the code bad or is the problem hard?

https://robertvbinder.com/software-testability-part-1-what-is-it/

https://arxiv.org/pdf/1801.02201.pdf

https://robertvbinder.com/software-testability-part-1-what-is-it/

Design for Testability: General Principles

Simple, modular, quiet

Why should we care about testability?

Less testable code

Increased burden on
developers

Fewer or less
effective tests

Higher rework
cost

Lower quality

How can we improve testability?

Core Concept: Isolation

SUT: System under Test 
DOC: Depended On Collaborator

Could be a method, class, or entire service

Collaborators can be classes, services, functions, …

Test doubles replace collaborators during testing

● Test services that haven’t been implemented!

● Isolate the code under test -- easier to find bugs!

● Faster test execution

● Deterministic test outcomes

● Simulate special conditions

● Provide access to hidden information

● ...

Test doubles provide numerous benefits

https://www.stillbreathing.co.uk/2015/11/15/crash-test-dummies

A motivating example: An Autonomous Car *

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf

Car

Test doubles can speed up test execution
● Route uses a slow and complex algorithm to find shortest path between two

GPS locations.

○ When we aren’t testing Route itself, we care whether the route is optimal.

● We can use a Route double to provide canned directions

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf

https://www.autofreaks.com/2014/37923/volvo-reveals-new-3-cylinder-engines/

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf
https://www.autofreaks.com/2014/37923/volvo-reveals-new-3-cylinder-engines/

Test doubles can remove non-determinism
● Route relies on real-time information to produce directions

○ E.g., weather, traffic, time of day, etc.

○ This makes Route non-deterministic and difficult to test

● Use a Route double to return same directions under same conditions

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf

https://www.autofreaks.com/2014/37923/volvo-reveals-new-3-cylinder-engines

https://cdn.icon-icons.com/icons2/2106/PNG/512/night_storm_showers_weather_icon_129621.png

https://www.flaticon.com/free-icon/clock_223404

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf
https://www.autofreaks.com/2014/37923/volvo-reveals-new-3-cylinder-engines/
https://cdn.icon-icons.com/icons2/2106/PNG/512/night_storm_showers_weather_icon_129621.png

Test doubles can simulate special conditions and inject faults

● Route gets its directions from an external service (e.g., Google Maps)

● We want to test how the Car behaves when it loses its internet connection

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf

https://www.autofreaks.com/2014/37923/volvo-reveals-new-3-cylinder-engines/

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf
https://www.autofreaks.com/2014/37923/volvo-reveals-new-3-cylinder-engines/

Test doubles can expose hidden information

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf

https://www.autofreaks.com/2014/37923/volvo-reveals-new-3-cylinder-engines/

● Engine should be started when Car is started

○ Engine’s internal state is not accessible to tests

● Use a Engine double to reveal the engine’s simulated state (idle/active)

https://sf.curbed.com/2020/3/10/21173265/uber-self-driving-cars-return-san-francisco-sf
https://www.autofreaks.com/2014/37923/volvo-reveals-new-3-cylinder-engines/

Code-Level vs. Service-Level Doubles

https://wiremock.org

https://pact.io

https://wiremock.org

There are several kinds of test double

See: https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/september/unit-testing-exploring-the-continuum-of-test-doubles

http://xunitpatterns.com/

https://martinfowler.com/articles/mocksArentStubs.html

http://xunitpatterns.com/Test%20Double%20Patterns.html

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da?gi=b7a3c3a0c968

https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/september/unit-testing-exploring-the-continuum-of-test-doubles
http://xunitpatterns.com/
https://martinfowler.com/articles/mocksArentStubs.html
http://xunitpatterns.com/Test%20Double%20Patterns.html
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da?gi=b7a3c3a0c968

Test Double: Dummy
Objects that are needed by the program (e.g., parameters) but are never actually used.

public interface Logger {

 public void append(String message);

}

public class LoggerDummy implements Logger {

 public void append(String message) {

 // we do nothing!

 }

}

Used to improve performance and test isolation, or remove the need for
complicated test scaffolding.

Test Double: Stub
Double for a real collaborator that gives predefined answers to calls during testing.

// Pass in a stub that was created by a mocking framework.

AccessManager accessManager = new AccessManager(stubAuthenticationService); 

// The user shouldn't have access when the authentication service returns false.

when(stubAuthenticationService.isAuthenticated(USER_ID)).thenReturn(false);

assertFalse(accessManager.userHasAccess(USER_ID)); 

// The user should have access when the authentication service returns true.

when(stubAuthenticationService.isAuthenticated(USER_ID)).thenReturn(true);

assertTrue(accessManager.userHasAccess(USER_ID));

Used to improve performance and test isolation, or to test the system under
certain conditions (e.g., unauthenticated user, exceptional cases).

https://testing.googleblog.com/2013/07/testing-on-toilet-know-your-test-doubles.html

Special Case: Record and Replay!

github.com/vy/hrrs

https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e

https://www.ros.org/press-kit/

https://github.com/vy/hrrs
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://www.ros.org/press-kit/

Test Double: Fake
Provides an optimized, thinned-down version of a collaborator that replicates the
same behavior of the original object without certain side effects or consequences.

public class FakeProductDatabase implements ProductDatabase {
 private Collection<Product> products = new ArrayList<Product>();

 public void save(Product product) {
 if (findById(product) == null)
 products.add(product);
 } 

 public Product findById(long id) {
 for (Product product : products) {
 if (product.getId() == id) return product;
 }
 return null;
 }
}

Behaves like a real
ProductDatabase that accesses a

database, but is simpler, faster, and
side-effect free.

Test Double: Spy
Used to track and test the secret internal state of a collaborator. Monitors calls to the
collaborator to track the internal state of that collaborator.

public interface RubiksCube {

 public void rotate(...);

}

public class RubiksCubeSolver {

 ...

 public void solve(RubiksCube cube);

}

Test Double: Mock
Used to test for expected interactions with a collaborator (i.e., method calls). Can behave
like a spy, a stub, or both.

// Pass in a mock that was created by a mocking framework. 

AccessManager accessManager = new AccessManager(mockAuthenticationService);

accessManager.userHasAccess(USER_ID); 

// The test should fail if accessManager.userHasAccess(USER_ID) didn't call

// authenticationService.isAuthenticated(USER_ID) or if it called it more than once.

verify(mockAuthenticationService).isAuthenticated(USER_ID);

https://testing.googleblog.com/2013/07/testing-on-toilet-know-your-test-doubles.html

Which test doubles could we use for these collaborators?

Summary

● API documentation is a tool for effective communication and
collaboration across different teams

● Testing and documentation, combined, allow teams to develop systems
separately without blocking on one another

● There’s a lot of choices when it comes to testing: What’s right for one
project might not be a good choice in another. Consider the trade-offs
and be wary of dogma and ambiguous language (e.g., testing pyramid).

● Testability drives most of our testing choices. Good systems and code-
level design leads to better testability and long-term health.

