
SE for ML
17-313 Fall 2022

Administrivia

○ HW4 Released
■ 3 checkpoints. Note, for checkpoint 1, tests don’t need to

pass/run
○ Midterm is graded

Retrospectives

● “the purpose of the Sprint Retrospective is to plan ways to increase
quality and effectiveness.” –Scrum.org

● We often use three questions:
● What should we:

○ Start doing?
○ Stop doing?
○ Keep doing?

Learning goals

● Identify differences between traditional software development and
development of ML systems.

● Understand the stages that comprise the typical ML development
pipeline.

● Identify challenges that must be faced within each stage of the typical ML
development pipeline.

6

Quick poll:
Have you taken a machine learning course before?

8

Source: https://xkcd.com/1425/

Machine Learning in One Slide

9

Model

Training

Lots of labelled data
(Inputs, outputs)

(Supervised)

“Bird”

Input

Output

Input

“Bird”

Output

Traditional Software Development

“It is easy. You just chip away the stone that doesn’t look like David.” –(probably
not) Michelangelo

ML Development

● Observation
● Hypothesis
● Predict
● Test
● Reject or Refine Hypothesis

Black-box View
of Machine Learning

Image: https://xkcd.com/1838/

Microsoft’s view of Software Engineering for ML

Source: “Software Engineering for Machine Learning: A Case Study” by Amershi et al. ICSE 2019

Three Fundamental Differences:

● Data discovery and management

● Customization and Reuse

● No modular development of model itself

Case Study

● Case study developed by
● Christian Kästner
● https://ckaestne.github.io/seai/

https://ckaestne.github.io/seai/

1
7

1
8

1
9

Qualities of Interest?

2
0

A

B

C

2
1

Typical ML Pipeline

● Static
○ Get labeled data (data collection, cleaning and, labeling)
○ Identify and extract features (feature engineering)
○ Split data into training and evaluation set
○ Learn model from training data (model training)
○ Evaluate model on evaluation data (model evaluation)
○ Repeat, revising features

● with production data
○ Evaluate model on production data; monitor (model monitoring)
○ Select production data for retraining (model training + evaluation)
○ Update model regularly (model deployment)

2
4

Example Data

2
5

Learning Data

2
6

Example Data

2
7

UserId PickupLocation TargetLocation OrderTime PickupTime
5 …. … 18:23 18:31
…

Feature Engineering

● Identify parameters of interest that a model may learn
on

● Convert data into a useful form
● Normalize data
● Include context
● Remove misleading things

2
8

2
9

Features?

Feature Extraction

● In OCR/translation:
○ Bounding boxes for text of interest
○ Character boundaries
○ Line segments for each character
○ GPS location of phone (to determine likely

source language)

3
0

3
1

Features?

Feature Extraction

● In surge prediction:
○ Location and time of past surges
○ Events
○ Number of people traveling to an area
○ Typical demand curves in an area
○ Demand in other areas
○ Weather

3
2

Data Cleaning

● Removing outliers
● Normalizing data
● Missing values
● …

3
3

Learning

● Build a predictor that best describes an
outcome for the observed features

3
4

Evaluation

● Prediction accuracy on learned data vs
● Prediction accuracy on unseen data

○ Separate learning set, not used for training

● For binary predictors: false positives vs. false negatives,
precision vs. recall

● For numeric predictors: average (relative) distance
between real and predicted value

● For ranking predictors: top-K, etc.

3
5

3
6

Evaluation Data and
Metrics?

3
7

Evaluation Data and
Metrics?

Learning and Evaluating in Production

● Beyond static data sets, build telemetry
● Design challenge: identify mistakes in practice

● Use sample of live data for evaluation
● Retrain models with sampled live data regularly
● Monitor performance and intervene

3
8

ML Model Tradeoffs

● Accuracy
● Capabilities (e.g. classification,

recommendation, clustering…)
● Amount of training data needed
● Inference latency
● Learning latency; incremental learning?
● Model size
● Explainable? Robust?
● …

4
1

Where should the model live?

4
3

Glasses

Phone

Cloud

OCR
Component

Translation
Component

Where should the model live?

4
4

Vehicle

Phone

Cloud

Surge
Prediction

Considerations

● How much data is needed as input for the model?
● How much output data is produced by the model?
● How fast/energy consuming is model execution?
● What latency is needed for the application?
● How big is the model? How often does it need to be

updated?
● Cost of operating the model? (distribution + execution)
● Opportunities for telemetry?
● What happens if users are offline?

4
5

Typical Designs

● Static intelligence in the product
○ difficult to update
○ good execution latency
○ cheap operation
○ offline operation
○ no telemetry to evaluate and improve

● Client-side intelligence
○ updates costly/slow, out of sync problems
○ complexity in clients
○ offline operation, low execution latency

4
6

Typical Designs

● Server-centric intelligence
○ latency in model execution (remote calls)
○ easy to update and experiment
○ operation cost
○ no offline operation

● Back-end cached intelligence
○ precomputed common results
○ fast execution, partial offline
○ saves bandwidth, complicated updates

● Hybrid models

4
7

Other Considerations

● Coupling of ML pipeline parts
● Coupling with other parts of the system
● Ability for different developers and analysists

to collaborate
● Support online experiments
● Ability to monitor

4
8

Reactive Systems

● Responsive
○ consistent, high performance

● Resilient
○ maintain responsive in the face of failure,

recovery, rollback
● Elastic

○ scale with varying loads

4
9

Updating Models

● Models are rarely static outside the lab
● Data drift, feedback loops, new features, new

requirements
● When and how to update models?
● How to version? How to avoid mistakes?

5
0

5
3

Update Strategy?

5
4

Update Strategy?

Mistakes will happen

● No specification
● ML components detect patterns from data (real and spurious)
● Predictions are often accurate, but mistakes always possible
● Mistakes are not predicable or explainable or similar to human

mistakes
● Plan for mistakes
● Telemetry to learn about mistakes?

5
7

How Models can Break

● System outage
● Model outage

○ model tested? deployment and updates reliable? file
corrupt?

● Model errors
● Model degradation

○ data drift, feedback loops

5
8

Hazard Analysis

● Worst thing that can happen?
● Backup strategy? Undoable? Nontechnical

compensation?

5
9

Mitigating Mistakes

● Investigating in ML
○ e.g., more training data, better data, better features, better

engineers
● Less forceful experience

○ e.g., prompt rather than automate decisions, turn off
● Adjust learning parameters

○ e.g., more frequent updates, manual adjustments
● Guardrails

○ e.g., heuristics and constraints on outputs
● Override errors

○ e.g., hardcode specific results

6
0

6
1

Mistakes?

6
2

Mistakes?

Telemetry

● Purpose:
○ monitor operation
○ monitor success (accuracy)
○ improve models over time (e.g., detect new features)

● Challenges:
○ too much data – sample, summarization, adjustable
○ hard to measure – intended outcome not observable? proxies?
○ rare events – important but hard to capture
○ cost – significant investment must show benefit
○ privacy – abstracting data

6
3

Requirements and estimation

● Talking to stakeholders

6
4

6
5

Source: https://xkcd.com/1425/

Summary

● Machine learning in production systems is challenging
● Many tradeoffs in selecting ML components and in

integrating them in larger system
● Plan for updates
● Manage mistakes, plan for telemetry

6
6

