Carnegie
Mellon

University

Advanced Automated
Testing

17-313 Fall 2022

ttttttttttttttttt

Administrivia

e HWS5 due Friday (Nov 18)

o Document N analysis tools across N team members
o LIME analysis

e HWG6 details will be released end of week
o Checkpoint will be in recitation Nov 30 / Dec 2

Learning Goals

Describe random test-input generation strategies such as fuzz testing
Characterize challenges of performance testing and suggest strategies

e Reason about failures in microservice applications how chaos engineering
can be applied to test resiliency of cloud-based applications

e Describe A/B testing for usability

Puzzle: Find x such p1(x) returns True

def pl(x):
2l il Y, Y d A o Y e s
return True
return False

Puzzle: Find x such p2(x) returns True

def p2(x):
if x > @ and x < 1000:
if ((x - 32) * 5/9 == 100):
return True
return False

Puzzle: Find x such p3(x) returns True

def p3(x):
if x > 3 and x < 100:
Z =X -2
cC =0

while z >= 2:
if z ** (x - 1) % x ==
c=c+1
z2 =2 -1
E G 55X B
return True
return False

/"UMKE}’ TACOS!

M S0
RaNpOM. (

https://xkcd.com/1210

Fuzz Testing

Security and Robustness

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
Reliability of

U | | X

Utilities

COMMUNICATIONS OF THE ACM/ December 1990/Vol.33, No 12 33

Communications of the ACM (1990)

14

On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash.

29

Fuzz Testing

w0019[a%#

/dev/random

m Execute

Program

!

X

o

A 1990 study found crashes in:
adb, as, bc, cb, col, diction, emacs, eqn,
fip, indent, lex, look, m4, make, nroff, plot,

prolog, ptx, refer!, spell, style, tsort, unigq,
vgrind, vi

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing untrusted
code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-free,
assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

How do you make programs “crash” when a bug is encountered?

Automatic Oracles: Sanitizers

Address Sanitizer (ASAN) ***
LeakSanitizer (comes with ASAN)
Thread Sanitizer (TSAN)
Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer

5
Compile with “clang —fsanitize=address’ Is the access out of bounds:

int get element(int* a, int i) {
if (a == NULL) abort();

int get_element(int* a, int i) { region = get_allocation(a);

return a[i];

} Is it null? if (in_heap(region)) { .
low, high = get_bounds(region);
int get element(int* a, int i) { if ((@a + i) < low || (a +i) > high) {
if (a == NULL) abort(); abort();
return a[i];
} }

return a[i];

}

Is this a reference to a stack-allocated variable after return?

int get element(int* a, int i) {
if (a == NULL) abort();
region = get allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();

}
if (in_heap(region)) { ... }
return a[i];

AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

Asan is a memory error detector for C/C++. It finds:
Use after free (dangling pointer dereference)

Heap buffer overflow
Stack buffer overflow
Global buffer overflow
Use after return

Use after scope
Initialization order bugs
Memory leaks

Slowdown about 2x on SPEC CPU 2006

average

senmmer 452 foquantum 471.omnetpp _ 483.xalanchk 444ramd

AN O OSSOSO

400.per pench zme Mswbmk hasiret 447 deal

Strengths and Limitations

e Exercise: Write down two strengths and two weaknesses of fuzzing.
Bonus: Write down one or more assumptions that fuzzing depends on.

@]
0,
N
I

Mutation-Based Fuzzing (e.g. Radamsa)

<foo></foo> <wo00>7</00>

Pick Random , Execute
Input Totaton Input

Initial
ﬁ

B —

@]
n
N
I

Mutation Heuristics

= Binary input

= Bit flips, byte flips

= Change random bytes

= |nsert random byte chunks

= Delete random byte chunks

= Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, O, 1, -1, ...
= Textinput

= Insert random symbols relevant to format (e.g. “<" and “>" for xml)

= Insert keywords from a dictionary (e.g. “<project>" for Maven POM.xml)
= GUIl input

» Change targets of clicks

= Change type of clicks

= Select different buttons

= Change text to be entered in forms

= ... Much harder to design

Coverage-Guided Fuzzing (e.g. AFL)

<foo></foo> <wo00>?7</00>
Initial
—

Execute
Program

Add

Input’ Coverage
Instrumentation

Execution feedback

- ' coverage

branch

v
coverage? ; o s

Coverage-Guided Fuzzing with AFL

The bug-o-rama trophy case

http://lcamtuf.coredump.cx/afl/

1JG jpeg?
libtiff12345
Mozilla Firefox 123 4
Adobe Flash / PCRE1234567
LibreOffice 123 4
GnuTLS 2
PuTTY 12
bash (post-Shellshock) 2

pdfium 12

libarchive 123456 -

BIND123 -

libjpeg-turbo 12
mozjpeg
Internet Explorer 12 3 4
sqlite 12 3 4
poppler 1 2
GnuPG1234
ntpd12
tepdump 123456789
ffmpeg 12345
wireshark 123

QEMU12

libpng 2
PHP12345678
Apple Safari X
OpenSSL1234567
freetype 12
OpenSSH 12345
nginx123
JavaScriptCore 123 4
libmatroska !
ImageMagick 123456789

lems?

http://lcamtuf.coredump.cx/afl/

ClusterFuzz @ Chromium

G bugs chromium ~ All issues v Q_ label:ClusterFuzz -status:Duplicate

D~ Pri v M~ Stars v ReleaseBlock ~ Component v

1133812 1 - 2 - Blink>GetUserMedia>Webcam Untriaged -

1133763 1 —— 1 e - Untriaged -

1133701 1 - 1 - Blink>JavaScript Untriaged -

1133254 1 - 2 - - Untriaged =~ -

1133124 1 - 1 e - Untriaged -

1133024 2 - 3 - Internals>Network Started dmcardle@ch

Ul>Accessibility, . . .
1132958 1 - 2 - Blink>Accessibility Assigned sin...@chromi

1132907 2 - 2 - Blink>JavaScript>GC Assigned dinfuehr@chr

Testing Performance

~NN

Performance Testing

e Goal: Identify performance bugs. What are these?
o Unexpected bad performance on some subset of inputs
o Performance degradation over time
o Difference in performance across versions or platforms

e Not as easy as functional testing. What's the oracle?
o Fast = good, slow = bad // but what's the threshold?
o How to get reliable measurements?
o How to debug where the issue lies?

(0 0])]

Performance Regression Testing

e Measure execution time of critical components
e Log execution times and compare over time

Job 12e96643840000

Issue 808613 -

Analyze benchmark results -

Differences found after commits

Re-record loading.desktop story set by
ksakamoto@chromium.org

Job arguments

benchmark
chart
configuration
statistic
story

target
tir_label

trace

loading.desktop
cpuTimeToFirstMeaningfulPaint
chromium-rel-mac11-pro

avg

Pantip

telemetry_perf_tests

warm

Pantip

2.0 hours - 2/14/2018, 9:48:34 AM

490

470

460

/./ '\‘\/

Re-record loading.desktop story set by ksakamoto@chromium.org

450

Build Test Values
ANEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEN
builder Mac Builder task_id 3baeadbeaa7f1710 Pantip_2018-02-14_11-40-

630b5fe7ae1b260e78db8823309 bot_id build197-b4 %% o7_s3865 i

. 5fe7ael e7! ot_i uild197-

isolate_hash 5 49b5640517b 45067 o6 250 eeBa0000135 trace Pantip_2018-02-14_11-40-
; eb87de! cc3adee 42_21734.html
isolate_hash g;s0t340c2c3

ON

[&)S3D

Flame Graph

||||-n|
— 1
:Hmm_mmmu___
\\uunumu-mummm||
o —7

i

e 5

3

E

Profiling

e Finding bottlenecks in execution time and memory

e Flame graphs are a popular visualization of resource consumption by call

stack.

Domain-Specific Perf Testing (e.g. JMeter)

88 Apache JMeter Dashboard by UbikLoadPack -

data_source jmeter_influx v application JMeter_demo ¥ transaction JR_OK ~ Start/stop marker [’7/

Summary

Total Requests Failed Requests Received Bytes Sent Bytes Error Rate %

2107 Requests Failed

Total Throughput Total Errors Active Threads ~

2018-04-10 16:03:40
Threads:

min ax avg total current

4.40 7.60 6.94 Num of Errors Threads

Transactions Response Times (95th pct)

http://jmeter.apache.org/

Performance-driven Design

o M Od e | i ng a n d Si m U | ati O n &2 View Report - 3 - Multithreading and QueuingArchitecture Simulator

. Evaluation Summary
o e.g. queuing theory roperty [vam |
A 4 4 £ Scenario Scenariol N .
e Specify load distributions e : ‘
Transaction Generation Rate 3
Actual Simulation Load
o Actual Network Load 0 =08
a n d d e r |Ve O r te St No. of System Transactions Generated {5T1=24, 5T2=24}
No. of System Transactions Completed {5T1=24, 5T2=24} .
A\Eeraoe Svsteng Transaction Completion Time 156938 M. (<
H 1 Choose a Grapl
o
configurations
: £
3
B Asset a
- Database
..... < 3 |
Overview Acme Source | ClientServer
88 properties X Tasks Problems | Acme Performance Simulator View Acme Security Simulator Yiew ¥ =0
Rules - Specify Performance Properties
Structure Performance Values | Error Handling
Types Response Range (Seconds) System Resources
Consumed (in %) a4
Representations Transaction Complexity | Yery Simple Simple Average
e Minimum Value | 1.02 1.041 1.06 [FMukithreaded [7] Queue
G Maximum Value | 1.03 1.05 |1.07 Max, Threads: Queue Size:
Visual
isuals 5 ‘ 100
Performance
Specify Performance Properties
1) Performance Values Error Handling
Error Handling
Errors Selected Parameters Value Error Handling Mechanism
Process Crash Successful system trans, (%) ‘ 99 Connect to another Thread, Log v

ent Crash o

; La)S3D

Stress testing

Robustness testing technique: test beyond the limits of normal operation.

Can apply at any level of system granularity.
e Stress tests commonly put a greater emphasis on robustness, availability,

and error handling under a heavy load, than on what would be
considered “correct” behavior under normal circumstances.

@]
0,
N
I

Soak testing

e Problem: A system may behave exactly as expected under artificially
limited execution conditions.

o E.g., Memory leaks may take longer to lead to failure (also motivates static/dynamic
analysis, but we'll talk about that later).

e Soak testing: testing a system with a significant load over a significant
period of time (positive).

e Used to check reaction of a subject under test under a possible simulated
environment for a given duration and for a given threshold.

Microservice Failures and
Chaos Engineering

(Slides credit Christopher Meiklejohn)

3
5

Monolithic Application

What kind of failures can happen here?

How likely is that error to happen?

Database ML Model

How do | fix it?

Container .

@]
(%%,
N
J

Microservice Application

Remember, these calls are messages
sent on an unreliable network.

Container

‘ Recommendation
Doc Service Service

Container Container

<}
%
S

Failures in Microservice Architectures

Network may be partitioned

All of these issues
can be indistinguishable

Server instance may be down from one another!

Communication between services Making the calls across the network to

may be delayed multiple machines makes the
probability that the system is operating

under failure much higher.
Server could be overloaded and

responses delayed

These are the problems of
latency and partial failure.

g [8)s3D

Server could run out of memory or
CPU

Where Do We Start?

How do we even begin to test these scenarios?

Is there any software that can be used to test these types
of failures?

Let's look at a few ways companies do this.

[&)S3D

ow

Game Days

Purposely injecting failures into critical systems in order to:

e |dentify flaws and “latent defects”

e |dentify subtle dependencies (which may or may not lead to a flaw/defect)
e Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

g [d)S3D

Game Days

Large-scale applications are built on and with “unreliable” components
Failure is inevitable (fraction of percent; at Google scale, ~multiple times)
Goals:

e Preemptively trigger the failure, observe, and fix the error

e Script testing of previous failures and ensure system remains resilient
e Build the necessary relationships between teams before disaster strikes

-5

[&)S3D

Example: Amazon GameDay

Full data center destruction (Amazon EC2 region)

No advanced notice of which data center will be taken offline

No notice of when the data center will be taken offline

Only advance notice (months) that a GameDay will be happening
Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for
detecting errors and p@ing employees was located in the zone of the

failure!

Not all failures can be actually

performed and must be simulated!

Other examples: Google

Terminate network in Sao Paulo for testing:
e Hidden dependency takes down links in Mexico which would have

remained undiscovered without testing

Turn off data center to find that machines won't come back:
e Ran out of DHCP leases (for IP address allocation) when a large number of

machines come back online unexpectedly.

Real Issues: Disney+ Launch

Disney+ problems last 24 hours

e Lots of issues reported
on launch day.
e Disney had planned for a

spike in traffic.
o Tested massive concurrent
video streaming capability.

e BUT: the stress was in
paths other than
streaming

o User account creation

o Logins and auth
o Browsing old titles

Unable to connect to Disney+

There seems to be an issue connecting

to the Disney+ service. Please try again

later if the issue persists.

OK

Netflix is another heavy cloud user...

Significant deployment in Amazon Web Services in order to remain
elastic in times of high and low load (first public, 100% w/o content delivery.)

Pushes code into production and modifies runtime configuration
hundreds of times a day

Key metric: availability

SPS is the
primary indicator

17:30 20:15 23:00 01:45 04:30 07:15 10:00 12:45 15:00

of the system’s
Time

overall health.

FIGURE 2. A graph of SPS ([stream] starts per second) over a 24-hour period. This
metric varies slowly and predictably throughout a day. The orange line shows the trend
for the prior week. The y-axis isn't labeled because the data is proprietary.

@ [d)S3D

Chaos monkey/Simian army

e A Netflix infrastructure testing
system.

e “Malicious” programs randomly
trample on components,
network, datacenters, AWS

instances...

o Force failure of components to make
sure that the system architecture is
resilient to unplanned/random
outages.

e Netflix has open-sourced their
chaos monkey code.

Testing Usability

Automating GUI/Web Testing

This is hard
Capture and Replay Strategy

O mouse actions
o system events

® Test Scripts: (click on button labeled "Start" expect value X in field Y)

® Lots of tools and frameworks
o e.g.Selenium for browsers

® (Avoid load on GUI testing by separating model from GUI)
® Beyond functional correctness?

Manual Testing?

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
/ 5 Select “Insert Picture” Insert Picture Menu opens
Live SySte m? 6 Select Picture Picture is Selected
7 Select “Send Message” Message 1s correctly sent

Extra Testing System?
Check output / assertions?
Effort, Costs?
Reproducible?

Usability: A/B testing

e Controlled randomized experiment with two variants, A and B, which are
the control and treatment.

e One group of users given A (current system); another random group
presented with B; outcomes compared.

e Often used in web or GUI-based applications, especially to test advertising
or GUI element placement or design decisions.

@]
0,
N
I

Example

e A company sends an advertising email to its customer database, varying
the photograph used in the ad...

@]
0,
N
I

Example: group A (99% of users)

Act now!
Sale ends
soon!

Example: group B (1%)

Act now!
Sale ends
soon!

A/B Testing

e Requires good metrics and statistical tools to identify significant
differences.

e E.g. clicks, purchases, video plays

e Must control for confounding factors

