
Advanced Automated
Testing

17-313 Fall 2022

1

Michael Hilton and Rohan Padhye

Administrivia

● HW5 due Friday (Nov 18)
○ Document N analysis tools across N team members
○ LIME analysis

● HW6 details will be released end of week
○ Checkpoint will be in recitation Nov 30 / Dec 2

Learning Goals

● Describe random test-input generation strategies such as fuzz testing
● Characterize challenges of performance testing and suggest strategies
● Reason about failures in microservice applications how chaos engineering

can be applied to test resiliency of cloud-based applications
● Describe A/B testing for usability

3

Puzzle: Find x such p1(x) returns True

def p1(x):
if x * x – 10 == 15:
return True

return False

4

Puzzle: Find x such p2(x) returns True

def p2(x):
if x > 0 and x < 1000:
if ((x - 32) * 5/9 == 100):
return True

return False

5

Puzzle: Find x such p3(x) returns True

def p3(x):
if x > 3 and x < 100:
z = x - 2
c = 0
while z >= 2:
if z ** (x - 1) % x == 1:
c = c + 1

z = z - 1
if c == x - 3:
return True

return False

6

Original: https://xkcd.com/1210 CC-BY-NC 2.5

https://xkcd.com/1210

Security and Robustness

8

Fuzz Testing

9

Communications of the ACM (1990)

“

”

Fuzz Testing

1
0

Input Program
Execute

w0o19[a%#
A 1990 study found crashes in:
adb, as, bc, cb, col, diction, emacs, eqn,
ftp, indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, uniq,
vgrind, vi

/dev/random

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing untrusted
code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-free,
assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

How to identify these bugs in languages like C/C++?

How do you make programs “crash” when a bug is encountered?

Automatic Oracles: Sanitizers

● Address Sanitizer (ASAN) ***
● LeakSanitizer (comes with ASAN)
● Thread Sanitizer (TSAN)
● Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer

int get_element(int* a, int i) {
return a[i];

}

int get_element(int* a, int i) {
if (a == NULL) abort();
return a[i];

}

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_heap(region)) {
low, high = get_bounds(region);
if ((a + i) < low || (a +i) > high) {
abort();

}
}
return a[i];

}

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();
…

}
if (in_heap(region)) { ... }
return a[i];

}

Is it null?

Is the access out of bounds?

Is this a reference to a stack-allocated variable after return?

Compile with `clang –fsanitize=address`

AddressSanitizer

Asan is a memory error detector for C/C++. It finds:
○ Use after free (dangling pointer dereference)
○ Heap buffer overflow
○ Stack buffer overflow
○ Global buffer overflow
○ Use after return
○ Use after scope
○ Initialization order bugs
○ Memory leaks

https://github.com/google/sanitizers/wiki/AddressSanitizer

Slowdown about 2x on SPEC CPU 2006

Strengths and Limitations

● Exercise: Write down two strengths and two weaknesses of fuzzing.
Bonus: Write down one or more assumptions that fuzzing depends on.

1
6

Mutation-Based Fuzzing (e.g. Radamsa)

1
8

Input
Pick

Input’
Random
Mutation Program

ExecuteInitial
Input

Input
Input

Input

Seeds

<foo></foo> <woo>?</oo>

Mutation Heuristics

§ Binary input
§ Bit flips, byte flips
§ Change random bytes
§ Insert random byte chunks
§ Delete random byte chunks
§ Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1, …

§ Text input
§ Insert random symbols relevant to format (e.g. “<“ and “>” for xml)
§ Insert keywords from a dictionary (e.g. “<project>” for Maven POM.xml)

§ GUI input
§ Change targets of clicks
§ Change type of clicks
§ Select different buttons
§ Change text to be entered in forms
§ … Much harder to design

Coverage-Guided Fuzzing (e.g. AFL)

Input
Pick

Input’
Random
Mutation Program

Execute

Save
?

Execution feedback

No

Yes

Add
Input’

Initial
Input

Input
Input

Input

Seeds

Coverage
Instrumentation

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒New
branch

coverage?

2
0

<foo></foo> <woo>?</oo>

Coverage-Guided Fuzzing with AFL

2
2

http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/

ClusterFuzz @ Chromium

2
7

Testing Performance

Performance Testing

● Goal: Identify performance bugs. What are these?
○ Unexpected bad performance on some subset of inputs
○ Performance degradation over time
○ Difference in performance across versions or platforms

● Not as easy as functional testing. What’s the oracle?
○ Fast = good, slow = bad // but what’s the threshold?
○ How to get reliable measurements?
○ How to debug where the issue lies?

2
8

Performance Regression Testing

● Measure execution time of critical components
● Log execution times and compare over time

2
9

Source: https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/speed/addressing_performance_regressions.md

Profiling

● Finding bottlenecks in execution time and memory
● Flame graphs are a popular visualization of resource consumption by call

stack.

3
0

Domain-Specific Perf Testing (e.g. JMeter)

http://jmeter.apache.org

http://jmeter.apache.org/

Performance-driven Design

● Modeling and simulation
○ e.g. queuing theory

● Specify load distributions
and derive or test
configurations

3
2

Stress testing

● Robustness testing technique: test beyond the limits of normal operation.
● Can apply at any level of system granularity.
● Stress tests commonly put a greater emphasis on robustness, availability,

and error handling under a heavy load, than on what would be
considered “correct” behavior under normal circumstances.

3
3

Soak testing

● Problem: A system may behave exactly as expected under artificially
limited execution conditions.
○ E.g., Memory leaks may take longer to lead to failure (also motivates static/dynamic

analysis, but we’ll talk about that later).

● Soak testing: testing a system with a significant load over a significant
period of time (positive).

● Used to check reaction of a subject under test under a possible simulated
environment for a given duration and for a given threshold.

3
4

(Slides credit Christopher Meiklejohn)

3
5

Microservice Failures and
Chaos Engineering

Monolithic Application

3
6

What kind of failures can happen here?

How likely is that error to happen?

How do I fix it?

Container

Database ML Model

Teedy

Microservice

Process Call

What kind of failures can happen here?

How likely is that error to happen?

How do I fix it?

Container

Microservice Application

3
7

Container

Doc Service

Teedy App

Container

Recommendation
Service

Remember, these calls are messages
sent on an unreliable network.

Microservice

Process Call

Failures in Microservice Architectures

3
8

1. Network may be partitioned

2. Server instance may be down

3. Communication between services
may be delayed

4. Server could be overloaded and
responses delayed

5. Server could run out of memory or
CPU

All of these issues
can be indistinguishable

from one another!

Making the calls across the network to
multiple machines makes the

probability that the system is operating
under failure much higher.

These are the problems of
latency and partial failure.

Where Do We Start?

How do we even begin to test these scenarios?

Is there any software that can be used to test these types
of failures?

Let’s look at a few ways companies do this.

3
9

Game Days

Purposely injecting failures into critical systems in order to:

● Identify flaws and “latent defects”
● Identify subtle dependencies (which may or may not lead to a flaw/defect)
● Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

4
0

Game Days

Large-scale applications are built on and with “unreliable” components

Failure is inevitable (fraction of percent; at Google scale, ~multiple times)

Goals:

● Preemptively trigger the failure, observe, and fix the error
● Script testing of previous failures and ensure system remains resilient
● Build the necessary relationships between teams before disaster strikes

4
1

Example: Amazon GameDay

4
2

Full data center destruction (Amazon EC2 region)

● No advanced notice of which data center will be taken offline
● No notice of when the data center will be taken offline
● Only advance notice (months) that a GameDay will be happening
● Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for
detecting errors and paging employees was located in the zone of the
failure!

Not all failures can be actually
performed and must be simulated!

Other examples: Google

Terminate network in Sao Paulo for testing:
● Hidden dependency takes down links in Mexico which would have

remained undiscovered without testing

Turn off data center to find that machines won’t come back:
● Ran out of DHCP leases (for IP address allocation) when a large number of

machines come back online unexpectedly.

4
3

Real Issues: Disney+ Launch

● Lots of issues reported
on launch day.

● Disney had planned for a
spike in traffic.
○ Tested massive concurrent

video streaming capability.

● BUT: the stress was in
paths other than
streaming
○ User account creation
○ Logins and auth
○ Browsing old titles

Netflix is another heavy cloud user…

Significant deployment in Amazon Web Services in order to remain
elastic in times of high and low load (first public, 100% w/o content delivery.)

Pushes code into production and modifies runtime configuration
hundreds of times a day

Key metric: availability

4
5

SPS is the
primary indicator

of the system’s
overall health.

Chaos monkey/Simian army

● A Netflix infrastructure testing
system.

● “Malicious” programs randomly
trample on components,
network, datacenters, AWS
instances…
○ Force failure of components to make

sure that the system architecture is
resilient to unplanned/random
outages.

● Netflix has open-sourced their
chaos monkey code.

4
6

4
7

Testing Usability

Automating GUI/Web Testing

● This is hard
● Capture and Replay Strategy

○ mouse actions
○ system events

● Test Scripts: (click on button labeled "Start" expect value X in field Y)
● Lots of tools and frameworks

○ e.g. Selenium for browsers

● (Avoid load on GUI testing by separating model from GUI)
● Beyond functional correctness?

4
8

Manual Testing?

● Live System?
● Extra Testing System?
● Check output / assertions?
● Effort, Costs?
● Reproducible?

Usability: A/B testing

● Controlled randomized experiment with two variants, A and B, which are
the control and treatment.

● One group of users given A (current system); another random group
presented with B; outcomes compared.

● Often used in web or GUI-based applications, especially to test advertising
or GUI element placement or design decisions.

5
0

Example

● A company sends an advertising email to its customer database, varying
the photograph used in the ad...

5
1

Example: group A (99% of users)

5
2

Act now!
Sale ends
soon!

Example: group B (1%)

5
3

Act now!
Sale ends
soon!

A/B Testing

● Requires good metrics and statistical tools to identify significant
differences.

● E.g. clicks, purchases, video plays
● Must control for confounding factors

5
4

