
Dependency Management & 
Versioning

17-313 Fall 2022

1



Administrivia

● HW6 Part A: Present your project and task selection in recitation
○ Participation is required for full credit (see HW6 spec on website for details)
○ Rubric released on Slack for guidance

● HW6 Part B/C – Come to office hours if you have any questions
● Final presentation slots have been scheduled

○ Section 1: Tuesday December 13th 5:30pm - 8:30pm POS 151&152
○ Section 2: Thursday December 15th 5:30pm - 8:30pm WEH 7500



Left-pad (March 22, 2016)

3



Left-pad (March 22, 2016)

4



Left-pad (Docs)

5



Left-pad (Source Code)

6



See also: isArray

7



Dependency Management

● It’s hard
● It’s mostly a mess (everywhere)
● But it’s critical to modern software development

8



What is a Dependency?

● Core of what most build systems do
○ “Compile” and “Run Tests” is just a fraction of their job

● Examples: Maven, Gradle, NPM, Bazel, …
● Foo->Bar: To build Foo, you may need to have a built version of Bar
● Dependency Scopes: 

○ Compile: Foo uses classes, functions, etc. defined by Bar 
○ Runtime: Foo uses an abstract API whose implementation is provided by Bar (e.g.

logging, database, network or other I/O)
○ Test: Foo needs Bar only for tests (e.g. JUnit, mocks)

● Internal vs. External Dependencies
○ Is Bar also built/maintained by your org or is it pulled from elsewhere using a package 

manager?

9



Dependencies: Example

1
0



Where are the dependencies hosted?

● Typically downloaded from dependency servers:
○ Maven Central (https://repo.maven.apache.org/maven2/)
○ Ubuntu Packages for Apt (https://packages.ubuntu.com/)
○ Python Package Index (https://pypi.org/) ]
○ NPM Public Registry (https://registry.npmjs.org/) 

● Packages need a unique identifier
○ Typically a package name (sometimes owner name) and version

● Custom repositories allowed by most package managers
○ Often used for company-internal packages or cache mirroring
○ Note problems with duplicates (same package name in different 

repositories; some priority order is needed)
● Somebody needs to manage repositories

○ Availability: Repository needs to be running
○ Access Control: Packages should only be published by owners
○ Integrity: Packages should be signed or otherwise verifiable
○ Uniqueness and archival: Only one artifact per version
○ Traceability: Packages can have metadata pointing to source or tests
○ Security: ???

https://repo.maven.apache.org/maven2/
https://packages.ubuntu.com/
https://pypi.org/
https://registry.npmjs.org/


Transitive Dependencies

1
2

Packages can depend on other packages

Git SSH-client

libSSL

zLib

Q: Should Git be able to use exports of libSSL (e.g. certificate 
management) or zLib (e.g. gzip compression)?



Diamond Dependencies

What are some problems when multiple intermediate dependencies have 
the same transitive dependency?

1
3

Git

SSH-Client

libSSL

libHTTP

Generally, can also be across levels

Git

SSH-
Client

zLib

libSSSL

libHTTP



Diamond Dependencies

What are some problems when multiple intermediate dependencies have 
the same transitive dependency?

1
4

Git 2.17.1

SSH-Client 1.7.6
libSSL 1.0.2

libHTTP 2.14 libSSL 1.1



Resolutions to the Diamond Problem

1. Duplicate it!
○ Doesn’t work with static linking (e.g. C/C++), but may be doable with Java (e.g.

using ClassLoader hacking or package renaming)
○ Values of types defined by duplicated libraries cannot be exchanged across

2. Ban transitive dependencies; just use a global list with one version for each
○ Challenge: Keeping things in sync with latest
○ Challenge: Deciding which version of transitive deps to keep

3. Newest version (keep everything at latest)
○ Requires ordering semantics
○ Intermediate dependency may break with update to transitive

4. Oldest version (lowest denominator)
○ Also requires ordering semantics
○ Sacrifices new functionality

5. Oldest non-breaking version / Newest non-breaking version
○ Requires faith in tests or semantic versioning contract

1
5



Semantic Versioning

● Widely used convention for versioning releases
○ E.g. 1.2.1, 3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rc1

● Format: {MAJOR} . {MINOR} . {PATCH}
● Each component is ordered (numerically, then lexicographically; release-aware)

○ 1.2.1 < 1.10.1
○ 3.1.0-alpha-1 < 3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0

● Contracts:
○ MAJOR updated to indicate breaking changes

■ Same MAJOR version => backward compatibility
○ MINOR updated for additive changes

■ Same MINOR version => API compatibility (important for linking)
○ PATCH updates functionality without new API 

■ Ninja edit; usually for bug fixes

1
6



https://semver.org/

1
7



People rely on SemVer contracts

1
8



Dependency Constraints

● E.g. Declare dependency on ”Bar > 2.1”
○ Bar 2.1.0, 2.1.1, 2.2.0, 2.9.0, etc. all match
○ 2.0.x does NOT match
○ 3.0.x does NOT match

● Diamond dependency problem can be resolved using SAT solvers
○ E.g. Foo 1.0.0 depends on “Bar >= 2.1” and “Baz 1.8.x”

■ Bar 2.1.0 depends on “Qux [1.6, 1.7]” 
■ Bar 2.1.1 depends on “Qux 1.7.0”
■ Baz 1.8.0 depends on “Qux 1.5.x” 
■ Baz 1.8.1 depends on “Qux 1.6.x”

○ Find an assignment such that all dependencies are satisfied
■ Solution: Use Bar 2.1.0, Baz 1.8.1, and Qux 1.6.{latest}

1
9



Semantic Versioning Contracts

● Largely trusting developers to maintain them
● Constrained/range dependencies can cause unexpected build failures
● Automatic validation of SemVer is hard

2
0



Cyclic Dependencies

● A very bad thing
● Avoid at all costs
● Sometimes unavoidable or intentional

○ E.g. GCC is written in C (needs a C compiler)
○ E.g. Apache Maven uses the Maven build system
○ E.g. JDK tested using JUnit, which requires the JDK to compile

2
1

A B



Cyclic Dependencies

● Bootstrapping: Break cycles over time
● Assume older version exists in binary (pre-built form)
● Step 1: Build A using an older version of B
● Step 2: Build B using new (just built) version of A
● Step 3: Rebuild A using new (just built) version of B
● Now, both A and B have been built with new versions of their 

dependencies
● Doesn’t work if both A and B need new features of each other at the same 

time (otherwise Step 1 won’t work)
○ Assumes incremental dependence on new features

● How was the old version built in the first place? (it’s turtles all the way 
down)

○ Assumption: cycles did not exist in the past
○ Successfully applied in compilers (e.g. GCC is written in C)

2
2



Dependency Security

● Will you let strangers execute arbitrary code on your laptop?
○ Think about this every time you do “pip install” or “npm install” or “apt-get updgrade” or 

“brew updgrade” or whatever (esp. with sudo)
○ Scary, right? Who are you trusting? Why?

● Typo squatting (“pip install numpi”)
● Outright malice (remember the event-stream incident?)
● Genuine security vulnerabilities due to software bugs

2
3



Takeaways

● Dependency management is hard.

2
4


