
Static Analysis and
Continuous Integration

Fall 2022



Static Analysis
Looking at the program

Purely syntactic

Dynamic Analysis
Running the program 
Dynamic properties

e.g.
A variable is never false
No uncaught exceptions

No null pointers



Static example: Linter
Static language-specific analysis tool for code styling and formatting

Checks for 
● Syntax errors
● Code standards adherence
● Code smells
● Security 



GitHub 
Actions

You are already running analysis tools

This recitation: add more to your GH Actions workflow (static and dynamic tools)



How does GH Actions work
● Runs on containers: it’s not on your laptop!

○ Platform might be different

● Like all boring code, it’s written in YAML (JSON as bullets)
○ Triggers: push, pull_requests (useful for forks)
○ Steps, working directories, timeout etc etc

● Testing actions: 
○ Can be frustrating to debug. Try commands locally as much as 

possible



YAML is 
basically 
fancy JSON



Try it out
Navigate to the recitation handout and begin

● Fix the CI
● Add a lint job to CI
● Add a code coverage reporter to CI
● (Bonus) PR bot comments about coverage



Some example 
tools



Semantic
● Language support system that powers code navigation on GH
● Processing source code into appropriate representation
● https://github.com/github/semantic 

https://github.com/github/semantic


Code Climate
● Syntactic analysis for determining code quality
● Provides a maintainability score on your application
● Reports various code smells in application code

Refer to https://docs.codeclimate.com/ for more information

https://docs.codeclimate.com/


CodeQL
● Discover vulnerabilities across a codebase 
● Query code as though it were data
● Discover a bad pattern
● Find similar occurrences across the entire codebase

Refer to https://codeql.github.com/ for more information

https://codeql.github.com/

