
Software Archaeology
and Anthropology

17-313 Fall 2023
Foundations of Software Engineering

https://cmu-313.github.io
Andrew Begel and Rohan Padhye

https://cmu-313.github.io/

• Slack

• Please add a profile picture.

• Ask questions in #general or #technical-questions. Please use threads.

• Office hours can be found on the course home page: http://cmu-
313.github.io

• For those of you who requested to swap recitations, stay tuned.

• COVID or other health issues? Please stay home.

2

Administrivia

http://cmu-313.github.io/
http://cmu-313.github.io/

Smoking Section

•Last full row

3

• Homework 1 is released.

• Part (a) is due Friday Sept 1, 11:59 pm. That’s tomorrow!

• Part (b) is due Thursday, Sept 7, 11:59pm.

• This is an individual assignment; we will compose groups next
week.

• Get started early, ask for help, and check the #technical-questions
channel; chances are your questions have been asked by others!

Homework

Team Formation Survey Due Friday

• Team formation survey is
posted on Canvas and in
Slack #announcements.

• Please fill in by TONIGHT!

Learning Goals

• Understand and scope the task of taking on and
understanding a new and complex piece of existing software
• Appreciate the importance of configuring an effective IDE
• Contrast different types of code execution environments

including local, remote, application, and libraries
• Enumerate both static and dynamic strategies for

understanding and modifying a new codebase
6

Context: big ole pile of code

• … do something with it!

7

You will never
understand the
entire system!

8

Challenge: How do I tackle this
codebase?

9

Challenge: How do I tackle this
codebase?
• Leverage your previous experiences (languages,

technologies, patterns)
• Consult documentation, whitepapers
• Talk to experts, code owners
• Follow best practices to build a working model of the system

10

Bad news: There are few helpful resources!

• Working Effectively with
Legacy Code.
Michael C. Feathers. 2004.
• Re-Engineering Legacy

Software.
Chris Birchall. 2016.
• The Legacy Code Programmer's

Toolbox.
Jonathan Boccara. 2019.

11

Why? Because of Tacit Knowledge

12

Today: How to tackle codebases

• Goal: develop and test a working model or set
of working hypotheses about how (some part
of) a system works
• Working model: an understanding of the

pieces of the system (components), and the
way they interact (connections)
• Focus: Observation, probes, and hypothesis

testing
• Helpful tools and techniques!

13

Live Demonstration: tldraw

https://github.com/tldraw/tldraw

14

https://github.com/tldraw/tldraw

Steps to Understand a New Codebase

• Look at README.md
• Clone the repo.
• Build the codebase.
• Figure out how to make it run.
• What do you want to mess with?
• Clone and own

• Traceability - Attach a debugger
• View Source
• Find the logs.
• Search for constants (strings, colors, weird integers (#DEADBEEF))

Participation Activities

• Pull out your phone.
• Download the Gradescope app.
• Log into Gradescope.
• Use email login, not SSO.

• Click “+” button to add 17-313.
• Entry Code: G24487

Download Gradescope
for iPhone

Download Gradescope
for Android

Participation Activity

• Take out a piece of paper.
• Write down one pro and one con about trying to understand a

new codebase by compiling and building it vs. just reading the
code.
• Pair with your neighbor and discuss your answers. Do you agree?
• Share with the class!
• Submit it on Gradescope by the end of class.

• Under Not Submitted (Assignments), click on August 31 Activity.
• Take a picture of your paper.
• Assign the picture to Question 1.
• Submit.

Observation: Software is full of patterns

• File structure
• System architecture
• Code structure
• Names
• …

18

Observation: Software is massively
redundant
• There’s always something to

copy/use as a starting point!

19

Observation: Code must run to do
stuff!

20

Observation: If code runs, it must have
a beginning…

21

Observation: If code runs, it must exist…

22

The Beginning: Entry Points

• Locally installed programs: run cmd, OS launch, I/O events,
etc.

• Local applications in dev: build + run, test, deploy (e.g., docker)

• Web apps server-side: Browser sends HTTP request
(GET/POST)

• Web apps client-side: Browser runs JavaScript, event handlers

Code must exist. But where?

• Locally installed programs: run cmd, OS launch, I/O events, etc.
• Binaries (machine code) on your computer

• Local applications in dev: build + run, test, deploy (e.g., docker)
• Source code in repository (+ dependencies)

• Web apps server-side: Browser sends HTTP request (e.g., GET,
POST)
• Code runs remotely (you can only observe outputs)

• Web apps client-side: Browser runs JavaScript, event handlers
• Source code is downloaded and run locally (see: browser dev tools!)

Can running code be
Probed/Understood/Edited?

25

Transparent OpaqueTranslucent

Source code built locally Server-side apps running remotelyBinaries running locally
Open source Closed source Open source Closed source

(P+U) (P) (U) (Talk to NSA)(P+U+E)

Creating a model of
unfamiliar code

26

Source code built
locally

Information Gathering

• Basic needs:
• Code/file search and navigation
• Code editing (probes)
• Execution of code, tests
• Observation of output (observation)

• Many choices here on tools! Depends on circumstance.
• grep/find/etc. Knowing Unix tools is invaluable
• A decent IDE
• Debugger
• Test frameworks + coverage reports
• Google (or your favorite web search engine)
• ChatGPT or LaMA

27

At the command line: grep and find!
(Google for tutorials)

Static Information Gathering: Use an IDE!
Real software is too complex to keep in your head

28

Consider documentation and tutorials judiciously

• Great for discovering entry points!
• Can teach you about general

structure, architecture (more on this
later in the semester)

• Often out of date.

• As you gain experience, you will
recognize more of these, and you
will immediately know something
about how the program works

• Also: discussion boards; issue
trackers

30

Discussion Boards and Issue Trackers

• Software is written by
people.
• How can we talk to them?
• Fortunately, they probably

aren’t dead.
• So, you can report

problems on GitHub.
• Or, ask them questions on

StackOverflow.

Dynamic Information Gathering
Change helps to inform and refine mental models

• Build it.
• Run it.
• Change it.
• Run it again.
• How did the behavior change?

32

Probes: Observe, control or “lightly”
manipulate execution

• print(“this code is running!”)
• Structured logging
• Debuggers
• Breakpoint, eval, step through / step

over
• (Some tools even support remote

debugging)
• Delete debugging
• Chrome Developer Tools

Step 0: Sanity check basic model + hypotheses

• Confirm that you can build and run the code.
• Ideally both using the tests provided, and by hand.

• Confirm that the code you are running is the code you built
• Confirm that you can make an externally visible change
• How? Where? Starting points:
• Run an existing test, change it
• Write a new test
• Change the code, write or rerun a test that should notice the

change
• Ask someone for help

Document and share your findings!

• Update README and docs
• Or better: use a Developer Wiki
• Use Mermaid for diagrams

• Screencast on Twitch
• Collaborate with others
• Include negative results, too!

35

https://mermaid.js.org/

Let’s try some of these techniques again…

36

https://github.com/tldraw/tldraw

https://github.com/tldraw/tldraw

