
Project Planning
17-313 Fall 2023

Foundations of Software Engineering
https://cmu-313.github.io

Andrew Begel and Rohan Padhye

https://cmu-313.github.io/


Learning Goals

• Recognize the importance of project planning
• Understand the difficulty of measuring progress
• Identify why software development has project 

characteristics
• Use milestones for planning and progress measurement
• Understand backlogs and user stories
• Get to know your team! 2



Project Teams
Team 1 Team 2 Team 3 Team 4

Section A

Lauren Smith Chris Lee Chayut Glankwamdee Riya Bhatia

Helen(Yujia) Zheng Akintayo Salu Aditya Ganesh Jason Kwok

Adeline Wu Peter Khomchenko Forever Akpabio Mohamad El Ghali

Yuvanshu Agarwal Jaden D'Abreo Keerti Mukkamala Yerim Song

Sherry Zhuge Ryan Wong

Team 1 Team 2 Team 3 Team 4

Section B

Olivia Van Zandt Yuhe Ma Serena Yao Sen Feng

Hanah Ryu Mayar Alkurdi Alice Hong Ariel Kwak

Ke Hao Chen Matthew Leboffe Yuchen Liang Cindy Liu

Raunak Sood Ritu Pathak Sicheng Lu Hao Kang

Mimi Chuang Bo Xia Bojun Li

Team 1 Team 2 Team 3 Team 4

Section C

Andrew Chung Derek Kim Janie Xiong John Bakhtiyorjon Mirzajonov

Julia Liu Monica Qiu Anastasiia Runova Muhammad Ammar Raza

Xuchao Zhou Phyllis Feng Sophia King Emma Shi

Aaron Marmolejos Swati Anshu Tanner Balluff Kelly Cha

Luna Wei Alexis Duong Kaitlyn Liu



Project Teams
Team 1 Team 2 Team 3 Team 4

Section D

Neha Tirumalai Reva Poddar Tika Kumar Sally Pak

Ava Givone Jacky Gao Grace Liao Lara Marinov

Abby Chen Zoe Rashmi Francis Adam Bournes

Vania Halim Holly Wang Benjamin Chen Meghna Chityala

Jonathan Lindstrom Melody Wang

Team 1 Team 2 Team 3 Team 4

Section E

Simran Bedi Minjoo Kim Tze Hng Loke Hank Xu

Huarui Lai Jonathan Ho Kyle Chen Rachel Luo

Dhruva Reddy Girase Nitya Adrienne Li Caleb Koo

Aarav Tanti Aanya Rustogi Tanay Bennur Sara Riyad

Tony Li

Team 1 Team 2 Team 3 Team 4

Section F

Constantine Westerink Khuslen Misheel Eichel Choi Jordi Gonzalez

Ellen Fang Joyce Huang Jamie Chen Noor Mostafa

Vanessa Lin Tyrece Jeffrey Oleg Plisov Alysson Gu

Sebastian Lu Connor Maas Kaylin Yeoh Rachel Wu

Katelyn Zheng Ryan Huang Itamar Hindi



Administrivia

• P1 due tonight 11:59pm
• We heard that some of your PRs don’t pass all the tests.



Administrivia

• Just write down what you did to try to debug it in your PR.
• See Prof. Padhye’s Sept 6, 4:45pm post in #general on Slack.
• P2 will be released tomorrow (Friday Sept 7). 
• This is a group assignment.
• Due date: October 12, 11:59pm.



Software Process
“The set of activities and associated results that produce a software 
product.”

7

Sommerville, Software Engineering, ed. 8



8



All software development process

Discuss the 
software that 
needs to be 

written

Write some 
code

Test the code 
to identify the 

defects

Debug to find 
causes of 
defects

Fix the defects



10

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%



11

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Development
(coding, testing, making progress towards goals)



12

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Addressing Inefficiencies

Productive Development
(coding, testing, making progress towards goals)



Let’s improve the reliability of this process

• Write down all requirements
• Review requirements 
• Require approval for all changes to requirements

• Use version control for all changes
• Review code

• Track all work items
• Break down feature development into small tasks 
• Write down and monitor all reported bugs
• Hold regular, frequent status meetings

• Plan and conduct quality assurance 

• Employ a DevOps framework to push code between developers and operations

13



14

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Addressing Inefficiencies

Process: Cost and Time estimates, Writing Requirements, Design, 
Change Management, Quality Assurance Plan, 

Development and Integration Plan

Productive Development
(coding, testing, making progress towards goals)



15

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

                                                                        Process

Productive Development
(coding, testing, making progress towards goals)

Fighting Fires / Addressing Inefficiencies



Example process issues

• Change Control: Mid-project informal agreement to changes suggested by 
customer. Project scope expands 25-50%

• Quality Assurance: Late detection of requirements and design issues. Test-
debug-reimplement cycle limits development of new features. Release with 
known defects.

• Defect Tracking: Bug reports collected informally. Bugs are overlooked.
• System Integration: Integration of independently developed components at 

the very end of the project. Interfaces out of sync.
• Source Code Control: Accidentally overwrote changes. Lost work.
• Scheduling: Late project. Developers asked to re-estimate work effort weekly.

16



17

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%
Process

Hypothesis: Process 
increases flexibility and 
efficiency

Ideal Curve: Upfront 
investment for later 
greater returns

Productive Development
(coding, testing, making progress towards goals)

Fighting Fires / Addressing Inefficiencies



18



Planning
19



20

Time estimation

https://xkcd.com/612/



Activity: Estimate Time

• Task A: Web version of the 
Monopoly board game with 
Pittsburgh street names
• Team: just you

• Task B: Bank smartphone app 
• Team: you with team of 4 developers, 

one experienced with iPhone apps, 
one with background in security

• Estimate 8h days, 20 workdays in a 
month, 220 workdays per year

• My Task A estimate: ___ days/wks
My Task B estimate: ___ days/wks

• Other Task A estimate: __ days/wks
Other Task B estimate: __ days/wks

• Other Task A estimate: __ days/wks
Other Task B estimate: __ days/wks 21



Revise Time Estimate

• Do you have comparable experience to base an estimate on? 
• How much design do you need for each task? 
• How much testing time do you need for each task? 
• Let’s break down the task into ~5 smaller tasks and estimate 

their lengths. 
• Revise our overall estimate, if necessary

22



Wisdom of the Crowd

23



24



25

✕π



Measuring Progress?

• “I’m almost done with the app. The frontend is almost fully 
implemented. The backend is fully finished except for the 
one stupid bug that keeps crashing the server. I only need to 
find the one stupid bug, but that can probably be done in an 
afternoon. We should be ready to release next week.”

26



Measuring Progress?

• Developer judgment: x% done
• Lines of code?
• Functionality?
• Quality?

27



Milestones and deliverables make
progress observable
• Milestone: clear end point of a (sub)tasks
• For project manager
• Reports, prototypes, completed subprojects
• “80% done“ is not a suitable mile stone

• Deliverable: Result for customer
• Similar to a milestone, but for customers
• Reports, prototypes, completed subsystems

28



Processes
29



Waterfall was the OG software process

30

Waterfall diagram CC-BY 3.0 Paulsmith99 at en.wikipedia

https://en.wikipedia.org/wiki/User:Paulsmith99
https://en.wikipedia.org/


… akin to processes pioneered in mass 
manufacturing (e.g., by Ford)

31



Lean production adapts to variable demand

• Toyota Production System (TPS)
• Build only what is needed, only when it is needed. 
• Use the “pull” system to avoid overproduction (Kanban) 
• Stop to fix problems, to get quality right from the start ( Jidoka)
• Workers are multi-skilled and understand the whole process; take 

ownership

• Lots of recent software buzzwords build on these ideas
• Just-in-time, DevOps, Shift-Left

32

Taiichi Ohno

See also: “The machine that changed the world” by James P Womack et al. The Free Press, 2007.



Now, most of us use Agile Methods

34



Scrum
(Only a brief intro) 35



Elements of Scrum

36



Backlogs

• The product backlog is all the features for the product
• The sprint backlog is all the features that will be worked on 

for that sprint. These should be broken down into discrete 
tasks:
• Fine-grained
• Estimated
• Assigned to individual team members
• Acceptance criteria should be defined

• User Stories are often used

37



Kanban boards

38



Scrum Meetings

• Sprint Planning Meeting
• Entire Team decides together what to tackle for that sprint

• Daily Scrum Meeting
• Quick Meeting to touch base on :

• What have I done? What am I doing next? What am I stuck on/need help?

• Sprint Retrospective 
• Review sprint process

• Sprint Review Meeting
• Review Product

39



User Stories

40

Source: https://www.flickr.com/photos/jakuza/2728096478



User Stories

41

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/



Card

• “As a [role], I want [function], so that [value]”



Conversation

• What must a developer do to implement this user story?



Confirmation

• How can we tell that the user story has been achieved?
• It’s easy to tell when the developer finished the code.
• But, how do you tell that the customer is happy?



Exercise

45

https://dribbble.com/shots/12512417-Scooter-Rental-App-Design



How to evaluate a user story?

46

Source: http://one80services.com/user-stories/writing-good-user-stories-
hint-its-not-about-writing/



Independent

• Schedule in any order.
• Not overlapping in concept.
• Not always possible.

47



Negotiable

• Details to be negotiated during development. 
• A good story captures the essence, not the details. 

48



Valuable

• This story needs to have value to someone (hopefully the 
customer).
• Especially relevant to splitting up issues.

49



Estimable

• Helps keep the size small.
• Ensure we negotiated correctly. 
• “Plans are nothing, planning is everything” 

 - Dwight D. Eisenhower 

50



Small

• Can be written on a 3x5 card.
• At most two person-weeks of work.
• Too big === unable to estimate 

51



Testable

• Ensures understanding of task 
• We know when we can mark task “Done” 
• Unable to test === I do not understand it

52



Activity

53



Next up: Teams


