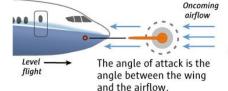
Case Study: Boeing 737 Max

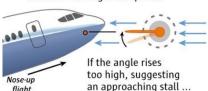
17-313

Learning Goals

- Understand issues around the Boeing 737 Max problems, and discuss how to avoid them
- Consider real and hypothetical solutions, and discuss when they are appropriate

Administrivia


- Project 2A: Due tonight
 - Feel free to ask scope-related questions on #projects
- Team self-assessments due tomorrow (please fill every week!)
- Next Tuesday (Sep 19): An exciting workshop on continuous deployment
 - Bring your laptop. If possible, sit near your team (or make new friends).
 - This week's recitation important pre-req.
 - Try to get basic-web-app deployed on at least one of Render or GCP. Will use the running app in Tuesday lecture.



How the MCAS (Maneuvering Characteristics Augmentation System) works on the 737 MAX

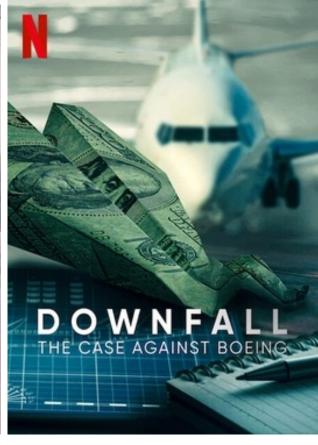
1. The angle-of-attack sensor aligns itself with oncoming airflow.

2. Data from the **sensor** is sent to the flight computer.

... the MCAS activates.

3. MCAS automatically swivels the **horizontal tail** to lift the plane's tail while moving the nose down.




Horizontal

In the Lion Air crash, the angle-of-attack sensor fed false information to the flight computer.

Sources: Boeing, FAA, Indonesia National Transportation Safety Committee, Leeham.net, and The Air Current

> Reporting by DOMINIC GATES, Graphic by MARK NOWLIN / THE SEATTLE TIMES

Activity: If you missed class, be prepared to discuss

- Facts of the case
- Relationships between facts
- Lessons learned from this case