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Administrativia

• Mid-term exam next week (Oct 10) in class
• Recitation this week: midterm review (come prepared!)
• https://cmu-313.github.io/recitations/reci6-midterm-review/ 
• Work through problems on the previous midterms – many students 

found this helpful.
• Any questions on the previous midterm questions – bring them to 

recitation to discuss as a class.
• Final Presentations (P5):

  Tuesday December 12th, 5:30 pm - 8:30pm, Room TBD
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https://cmu-313.github.io/recitations/reci6-midterm-review/


Learning Goals

• Contrast the monolithic application design with a modular 
design based on microservices. 
• Reason about how architectural choices affect software 

quality and process attributes.
• Reason about tradeoffs of microservices architectures.
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Before we get to microservices…
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How might these apps be
architected?
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Monolithic styles: Client-server or MVC
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Source: h*ps://www.seobility.net (CC BY-SA 4.0)



Monoliths make trade-offs on software quality

Several consequences of this architecture on:

• Scalability

• Reliability

• Performance

• Development

• Maintainability

• Evolution

• Testability

• Ownership
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Service-based architecture – 
Chrome
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Web Browsers
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Source: h*ps://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Browser: A multi-threaded process
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Multi-process browser with IPC
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Browser Architectures
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture
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Source: h*ps://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture
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Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Microservice architecture –
Netflix
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Netflix
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Netflix Microservices – App Boot

• Recommendations

• Trending Now

• Continue Watching

• My List

• Metrics
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(as of 2016)



Netflix Microservices – One Request

https://www.youtube.com/watch?v=CZ3wIuvmHeM (as of 2016)

https://www.youtube.com/watch?v=CZ3wIuvmHeM


Who uses Microservices?
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Microservices –
The Hipster Shop Example
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Hipster Shop: Guess some microservices
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https://onlineboutique.dev

https://onlineboutique.dev/


Hipster Shop Microservice Architecture

2
8

https://github.com/GoogleCloudPlatform/microservices-demo



Microservices
What are the consequences of this architecture? On:

• Scalability

• Reliability

• Performance

• Development

• Maintainability

• Evolution

• Testability

• Ownership

• Data Consistency
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Scalability
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Source: http://martinfowler.com/articles/microservices.html



Team Organization (Conway’s Law)
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Source: http://martinfowler.com/articles/microservices.html

“Products” not “Projects”



Data Management and Consistency
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Source: http://martinfowler.com/articles/microservices.html



Deployment and Evolution
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Source: http://martinfowler.com/articles/microservices.html



Microservices
• Building applications as suite of small and easy to replace 

services
• fine grained, one functionality per service

(sometimes 3-5 classes)
• composable
• easy to develop, test, and understand
• fast (re)start, fault isolation
• modelled around business domain

• Interplay of different systems and languages
• Easily deployable and replicable
• Embrace automation, embrace faults
• Highly observable
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Are microservices always the right choice?



Microservices overhead
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Microservice challenges

• Complexities of distributed systems
• network latency, faults, inconsistencies
• testing challenges

• Resource overhead, RPCs
• Requires more thoughtful design (avoid ”chatty” APIs, be more coarse-

grained)
• Shifting complexities to the network
• Operational complexity
• Frequently adopted by breaking down monolithic application
• HTTP/REST/JSON communication

• Schemas? Document API using Swagger, etc.
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Swagger



Taken to the extreme… 
Serverless (Functions-as-a-Service)
• Instead of writing minimal services, write just functions
• No state, rely completely on cloud storage or other cloud 

services
• Pay-per-invocation billing with elastic scalability
• Drawback: more ways things can fail, state is expensive
• Examples: 

AWS lambda, CloudFlare workers, Azure Functions
• What might this be good for?
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More in DevOps & Scaling


