
Microservice Architectures
17-313 Fall 2023

Foundations of Software Engineering
https://cmu-313.github.io

Andrew Begel and Rohan Padhye
Inspirations:
Martin Fowler (http://martinfowler.com/articles/microservices.html)
Josh Evans @ Netflix (https://www.youtube.com/watch?v=CZ3wIuvmHeM)
Matt Ranney @ Uber (https://www.youtube.com/watch?v=kb-m2fasdDY)
Christopher Meiklejohn & Filibuster (http://filibuster.cloud)

https://cmu-313.github.io/
http://martinfowler.com/articles/microservices.html
https://www.youtube.com/watch?v=CZ3wIuvmHeM
https://www.youtube.com/watch?v=kb-m2fasdDY
http://filibuster.cloud/

Administrativia

• Mid-term exam next week (Oct 10) in class
• Recitation this week: midterm review (come prepared!)
• https://cmu-313.github.io/recitations/reci6-midterm-review/
• Work through problems on the previous midterms – many students

found this helpful.
• Any questions on the previous midterm questions – bring them to

recitation to discuss as a class.
• Final Presentations (P5):

 Tuesday December 12th, 5:30 pm - 8:30pm, Room TBD

2

https://cmu-313.github.io/recitations/reci6-midterm-review/

Learning Goals

• Contrast the monolithic application design with a modular
design based on microservices.
• Reason about how architectural choices affect software

quality and process attributes.
• Reason about tradeoffs of microservices architectures.

3

Before we get to microservices…

4

How might these apps be
architected?

5

Monolithic styles: Client-server or MVC

6

Source: h*ps://www.seobility.net (CC BY-SA 4.0)

Monoliths make trade-offs on software quality

Several consequences of this architecture on:

• Scalability

• Reliability

• Performance

• Development

• Maintainability

• Evolution

• Testability

• Ownership

7

Service-based architecture –
Chrome

8

Web Browsers

9

Source: h*ps://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser: A multi-threaded process

1
0

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-process browser with IPC

1
1

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser Architectures

1
2

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

1
3

Source: h*ps://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

1
4

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Microservice architecture –
Netflix

2
1

Netflix

2
2

Netflix Microservices – App Boot

• Recommendations

• Trending Now

• Continue Watching

• My List

• Metrics

2
3

(as of 2016)

Netflix Microservices – One Request

https://www.youtube.com/watch?v=CZ3wIuvmHeM (as of 2016)

https://www.youtube.com/watch?v=CZ3wIuvmHeM

Who uses Microservices?

2
51

7

Microservices –
The Hipster Shop Example

2
6

Hipster Shop: Guess some microservices

2
7

https://onlineboutique.dev

https://onlineboutique.dev/

Hipster Shop Microservice Architecture

2
8

https://github.com/GoogleCloudPlatform/microservices-demo

Microservices
What are the consequences of this architecture? On:

• Scalability

• Reliability

• Performance

• Development

• Maintainability

• Evolution

• Testability

• Ownership

• Data Consistency

2
9

Scalability

3
0

Source: http://martinfowler.com/articles/microservices.html

Team Organization (Conway’s Law)

3
1

Source: http://martinfowler.com/articles/microservices.html

“Products” not “Projects”

Data Management and Consistency

3
2

Source: http://martinfowler.com/articles/microservices.html

Deployment and Evolution

3
3

Source: http://martinfowler.com/articles/microservices.html

Microservices
• Building applications as suite of small and easy to replace

services
• fine grained, one functionality per service

(sometimes 3-5 classes)
• composable
• easy to develop, test, and understand
• fast (re)start, fault isolation
• modelled around business domain

• Interplay of different systems and languages
• Easily deployable and replicable
• Embrace automation, embrace faults
• Highly observable

3
4

Are microservices always the right choice?

Microservices overhead

3
6

Microservice challenges

• Complexities of distributed systems
• network latency, faults, inconsistencies
• testing challenges

• Resource overhead, RPCs
• Requires more thoughtful design (avoid ”chatty” APIs, be more coarse-

grained)
• Shifting complexities to the network
• Operational complexity
• Frequently adopted by breaking down monolithic application
• HTTP/REST/JSON communication

• Schemas? Document API using Swagger, etc.

3
7

Swagger

Taken to the extreme…
Serverless (Functions-as-a-Service)
• Instead of writing minimal services, write just functions
• No state, rely completely on cloud storage or other cloud

services
• Pay-per-invocation billing with elastic scalability
• Drawback: more ways things can fail, state is expensive
• Examples:

AWS lambda, CloudFlare workers, Azure Functions
• What might this be good for?

3
8

More in DevOps & Scaling

