
Software Risk Management:
Code Review

17-313 Fall 2023
Foundations of Software Engineering

https://cmu-313.github.io
Andrew Begel and Rohan Padhye

https://cmu-313.github.io/

Administrivia

• Mid-term exam next week (Oct 10) in class
• Recitation this week: midterm review (come prepared!)
• https://cmu-313.github.io/recitations/reci6-midterm-review/
• Work through problems on the previous midterms – many students

found this helpful.
• Any questions on the previous midterm questions – bring them to

recitation to discuss as a class.
• Fill in Team Assessment Survey by Friday 3:00pm
• Final Presentations (P5):

 Tuesday December 12th, 5:30 pm - 8:30pm, Room TBD

https://cmu-313.github.io/recitations/reci6-midterm-review/

Administrivia

• Participation exercises are meant for in-class participation
only. Please do not submit anything to Gradescope if you are
not physically present in PH 100.

Ways to Test and Validate Your Code

• Static Validation
• Stare at the code

• Dynamic Validation
• Run the source code

Dynamic Validation

Productionad hoc Unit tests IntegrationContinuous
Integration

Canaries

Static Validation

• Style guides
• Compiler warnings and errors
• Static analysis
• FindBugs
• clang-tidy
• Pylons Webtest

• Code review

https://findbugs.sourceforge.net/
https://clang.llvm.org/extra/clang-tidy/
https://docs.pylonsproject.org/projects/webtest/en/latest/

Style Guide

• List of environment-specific preferred practices
• Could include:
• Libraries / idioms to use
• Formatting

Style Guide Examples

• https://www.python.org/dev/peps/pep-0008/
• https://github.com/airbnb/javascript
• https://subversion.apache.org/docs/community-

guide/conventions.html
• https://google.github.io/styleguide/cppguide.html
• https://google.github.io/styleguide/pyguide.html
• Linux kernel style guide

https://www.python.org/dev/peps/pep-0008/
https://github.com/airbnb/javascript
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Who writes these style guides?

👀

Who writes these style guides?

(ad hoc 🍑🗣) Self-proclaimed code protectors

(wisdom) Team veteran developers

(copy-paste) Google search for blog posts by experts

(empirical study) Evidence-based analysis of code styles that

correlate with bugs

Code Review

• Does this code do what it claims?
• Are there any programming bugs?

• Why are we making this change?
• Are there any design bugs?

Fishy Code Example #1

Fishy Code Example #2a

Fishy Code Example #2b

Fishy Code Example #2c

Checklists help manage complex processes

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

Activity: Create your own checklist

• In pairs, think about dumb mistakes your “friend” made the last
time they were coding.
• Write your names on a piece of paper.
• Write down two checklist items that would have caught those errors.

• Divide into teams: left and right sides of the classroom.
• Shout your ideas to Prof Begel, who will write them on the

chalkboard.
• Which team had the most unique/good entries in their list?

• By 5pm, upload a picture of your paper to Gradescope: October 5
Activity.

Sample Low-Level Coding Checklist
(not complete)

• General
• Are all changes relevant?
• Do the classes and methods fulfill

their purpose?
• Are the messages and texts for the

user correct?

• Classes
• Are all assignments of attributes

correct?
• Are the classes implemented

correctly?

• Arguments
• Are the correct arguments used in

all method calls?

• Recursion
• Does recursion terminate properly?

• Methods
• Do methods always return a valid

value?
• Do methods check parameters for

validity (if needed)?
• Are all parameters used?
• Do methods have parameter and

return types declared? Variables
• Are all variables, counters, and

accumulators initialized properly
and, if necessary, re-initialized
every time they are used?

• Are all declared variables being
used?

• If-Then Statements
• Do the if-else statements fit the

intended purpose?
• Are all edge cases handled?

• Loops
• Do the loops end under all possible

conditions?
• Are the break and continue

statements used properly?

• Errors
• Are exceptions handled correctly?

• Final Check
• Are all changes consistent with one

another?

Formal Inspections

• Idea popularized in 70s at IBM
• Broadly adopted in 80s, much research
• Sometimes replaced component testing

• Group of developers meets to formally review code or other artifacts
• Most effective approach to find bugs
• Typically, 60-90% of bugs found with inspections

• Expensive and labor-intensive

Inspection Team and Roles

• Typically, 4-5 people (min 3)
• Author
• Inspector(s)
• Find faults and broader issues

• Reader
• Presents the code or document at inspection meeting

• Scribe
• Records results

• Moderator
• Manages process, facilitates, reports

Motivation

• Linus’s Law: “Given enough eyeballs, all bugs are shallow.”
• - The Cathedral and the Bazaar, Eric Raymond

Expectations and Outcomes

Code Review at Microsoft

Bacchelli, Alberto and Christian Bird. "Expectations, outcomes, and challenges of modern code review."
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Outcomes (Analyzing Reviews)

Mismatch of Expectations and
Outcomes
• Low quality of code reviews
• Reviewers look for easy errors, as formatting issues
• Miss serious errors

• Understanding is the main challenge
• Understanding the reason for a change
• Understanding the code and its context
• Feedback channels to ask questions often needed

• No quality assurance on the outcome

Code Review at Google

• Introduced to “force developers to write code that other
developers could understand”
• Three benefits:
• checking the consistency of style and design
• ensuring adequate tests
• improving security by making sure no single developer could

commit arbitrary code without oversight

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code Review:
A Case Study at Google. International Conference on Software Engineering

Reviewing Relationships

The State of Code Review survey

Code Review

• Start with the “big ideas”
• Automate the little things
• Focus on understanding
• Remember a person wrote the code
• Don’t overwhelm the person with feedback

Don’t forget that coders are people with feelings

• A coder’s self-worth is in their artifacts
• CI can avoid embarrassment
• Identify defects, not alternatives; do not criticize coder
• “you didn’t initialize variable a” -> “I don’t see where variable a is

initialized”
• Avoid defending code; avoid discussions of

solutions/alternatives
• Reviewers should not “show off” that they are better/smarter
• Avoid style discussions if there are no guidelines
• The coder gets to decide how to resolve fault

