Software Risk Management:
Code Review

17-313 Fall 2023
Foundations of Software Engineering

https://cmu-313.github.io
Andrew Begel and Rohan Padhye

SEiETE e ot Carnegie
S0 ssiemsocparime lon_

https://cmu-313.github.io/

Administrivia

« Mid-term exam next week (Oct 10) in class

 Recitation this week: midterm review (come prepared!)
e https://cmu-313.github.io/recitations/reci6-midterm-review/

« Work through problems on the previous midterms - many students
found this helpful.

« Any questions on the previous midterm questions - bring them to
recitation to discuss as a class.

* Fill in Team Assessment Survey by Friday 3:00pm

* Final Presentations (P5):
Tuesday December 12th, 5:30 pm - 8:30pm, Room TBD

Software and Societal g[all'lnegle
Systems Department elion

Universi

https://cmu-313.github.io/recitations/reci6-midterm-review/

Administrivia

* Participation exercises are meant for in-class participation
only. Please do not submit anything to Gradescope if you are
not physically present in PH 100.

Software and Societal Carnegle
Systems Department 2 .

Ways to Test and Validate Your Code

 Static Validation
« Stare at the code

« Dynamic Validation
 Run the source code

Software and Soc t I Carnegle
3D Systems D epar tm 2 .

Dynamic Validation

ad hoc Unittests Continuous [htegration Canaries Production
[htegration

Software and Societal Carnegle
Systems Department Me!lon :
Universi

Static Validation

» Style guides
« Compiler warnings and errors

e Static analysis
« FindBugs
e clang-tidy
* Pylons Webtest

e« Code review

Software and Societal Carnegle
Systems Department Me!lon :
Universi

https://findbugs.sourceforge.net/
https://clang.llvm.org/extra/clang-tidy/
https://docs.pylonsproject.org/projects/webtest/en/latest/

Style Guide

» List of environment-specific preferred practices

e Could include:
e Libraries / idioms to use
« Formatting

Software and Societal gflall.flegle
Systems Department ellon
Universi

Style Guide Examples

e https://www.python.org/dev/peps/pep-0008/
» https://github.com/airbnb/javascript

» https://subversion.apache.org/docs/community-
U|de/convent|ons html

« https://google.github.io/styleguide/cppguide.html
« https://google.github.io/styleguide/pyguide.html
 Linux kernel style guide

Carnegie

Software and Societal
Systems Department

https://www.python.org/dev/peps/pep-0008/
https://github.com/airbnb/javascript
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Who writes these style guides?

°)°)

Softwar
3D Systems Dep tttttt

Who writes these style guides?

(ad hoc %) Self-proclaimed code protectors

(wisdom) Team veteran developers

(copy-paste) Google search for blog posts by experts
(empirical study) Evidence-based analysis of code styles that

correlate with bugs

Software and Societal Carnegie
S3D e separiment lon

Code Review

e Does this code do what it claims?
 Are there any programming bugs?

« Why are we making this change?
 Are there any design bugs?

Software and Societal gflall.flegle
Systems Department ellon
Universi

LAST PUSH

'LL JUST CHECK

YOUR CODE QUALITY

WELCOME TO

MONKESQUSER. COM

Carnegie
Mellon
Universi

last push

Software and Societal
Systems Department

S3D

Fishy Code Example #1

» doSomething(

doSomethingOther(int

internalMethod

D Software and Societal Carnegie
Systems Department Me!lon .
University

Fishy Code Example #2a

doSomeFormatting(¢

= strtoupper(trim(

33 Software and Societal Carnegle

Systems Department Me!lon .
Universi

Fishy Code Example #2b

doSomeFormatting(string

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Fishy Code Example #2c

doSomeFormatting(string

strtoupper(trim(

33 Software and Societal Carnegle

Systems Department Me!lon .
Universi

OCesses

.
7 s

,,,,,

T

COCKPIT
MODEL 299

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

83 Software and Societal Carnegle

Systems Department

Activity: Create your own checklist

* [h pairs, think about dumb mistakes your “friend” made the last
time they were coding.

« Write your names on a piece of paper.
« Write down two checklist items that would have caught those errors.

* Divide into teams: left and right sides of the classroom.

« Shout your ideas to Prof Begel, who will write them on the
chalkboard.

« Which team had the most unique/good entries in their list?

* By 5pm, upload a picture of your paper to Gradescope: October 5
Activity.

Software and Societal g[all'lnegle
Systems Department elion

Universi

Sample Low-Level Coding Checklist

(not complete)

General
« Are all changes relevant?

« Do the classes and methods fulfill
their purpose?

« Are the messages and texts for the
user correct?

Classes

« Are all assignments of attributes
correct?

« Arethe classes implemented
correctly?

Arguments

« Arethe correct arguments used in
all method calls?

Recursion

« Does recursion terminate properly?

Software and Societal
Systems Department

S35

Methods

Do methods always return a valid
value?

Do methods check parameters for
validity (if needed)?

Are all parameters used?

Do methods have parameter and
return types declared? Variables

Are all variables, counters, and
accumulators initialized properly
and, if necessary, re-initialized
every time they are used?

Are all declared variables being
used?

F-Then Statements

« Do the if-else statements fit the
intended purpose?

« Are all edge cases handled?

Loops

« Do the loops end under all possible
conditions?

» Arethe break and continue
statements used properly?
Errors
» Are exceptions handled correctly?

Final Check

» Are all changes consistent with one
another?

Carnegie
Mellon
Universi

Formal [hspections

« [dea popularized in 70s at [BM

Broadly adopted in 80s, much research
« Sometimes replaced component testing

Group of developers meets to formally review code or other artifacts

Most effective approach to find bugs
* Typically, 60-90% of bugs found with inspections

Expensive and labor-intensive

Software and Societal g[all'lnegle
Systems Department ellon
Universi

[(hspection Team and Roles

» Typically, 4-5 people (min 3)
* Author

* [hspector(s)
* Find faults and broader issues

e Reader
« Presents the code or document at inspection meeting

e Scribe
 Records results

« Moderator
« Manages process, facilitates, reports

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Motivation

e Linus's Law: “Given enough eyeballs, all bugs are shallow.”
- The Cathedral and the Bazaar, Eric Raymond

A
Relative cost to fix bugs,

0 based on time of detection

25x
20x
15x
10x

5x

0Ox

. . System / .
Requirements / " Integration / Production /
Architecture Soding Component Testing f\ccepiance Post-release

Testing
Software and Societal gflall.flegle
Systems Department ellon
Universi

Expectations and Outcomes

Code Review at Microsoft

Ranked Motivations From Developers

B 7o [Second [] Third

-
-
-
-

Finding Defects

Code Improvement
Alternative Solutions
Knowledge Transfer
Team Awareness
Improve Dev Process
Avoid Build Breaks
Share Code Ownership
Track Rationale

Team Assessment

ﬂmmm

O -
-
-

200 400

[=2]
o
o

Responses

Bacchelli, Alberto and Christian Bird. "Expectations, outcomes, and challenges of modern code review."
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Software and Societal Carnegle
Systems Department 2 .

Outcomes (Analyzing Reviews)

Code Improvements
Understanding

Social Communication
Defects

External Impact
Testing

Review Tool
Knowledge Transfer
Misc

I

0% 10% 20% 30%

D Software and Societal g/[alﬁrlegle
Systems Department elion
Universi

Mismatch of Expectations and
Outcomes

 Low quality of code reviews
« Reviewers look for easy errors, as formatting issues

« Miss serious errors
« Understanding is the main challenge
« Understanding the reason for a change

« Understanding the code and its context
« Feedback channels to ask questions often needed

* No quality assurance on the outcome

Carnegie
Mellon
Universi

Software and Societal
Systems Department

Code Review at Google

e [htroduced to “force developers to write code that other
developers could understand”

* Three benefits:
 checking the consistency of style and design
* ensuring adequate tests

 improving security by making sure no single developer could
commit arbitrary code without oversight

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code Review:
A Case Study at Google. International Conference on Software Engineering

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Reviewing Relationships

Project lead

Education
Maintaining
Maintaining . norms
- norms Gatekeepin
Readability Develo er P9 other
reviewers p teams
Education B
Maintaining ~ ucation
norms “Accident prevention
New team Other team
members members

D Software and Societal Carnegle
Systems Department . .

The State of Code Review survey

What do you believe are the most important benefits of code review?

Improved Software Quality

Sharing Knowledge Across the Team
Adherence to Coding Standards/Conventions
Ability to Mentor Less-Experienced Developers
Increased Collaboration

Reduced Project Time/Costs

Ability to Comply with Regulatory Standards
Internal Audits

Ability to Set Expectations

Enhanced Customer Satisfaction/Retention
Enhanced Mobility of Code

Strengthen Competitive Advantage

1S0/Industry Certifications

20%

16%

209 3(1% 40% 509

59%

57%

52%

37%

31%

28%

28%

26%

26%

73%

n=1129

Carnegie

Software and Societal
Systems Department

Code Review

e Start with the "big ideas”

« Automate the little things

« Focus on understanding
 Remember a person wrote the code

» Don't overwhelm the person with feedback

Carnegie

Software and Societal
Systems Department

Don't forget that coders are people with feelings

e A coder’'s self-worth is in their artifacts
e Clcan avoid embarrassment

- [Hentify defects, not alternatives; do not criticize coder

* "you didn't initialize variable a" -> “lldon’t see where variable a is
initialized”

 Avoid defending code; avoid discussions of
solutions/alternatives

« Reviewers should not “show off” that they are better/smarter

* Avoid style discussions if there are no guidelines
* The coder gets to decide how to resolve fault

Carnegie

Software and Societal
Systems Department

