
QA: Analysis Tools
17-313 Fall 2023

Foundations of Software Engineering
https://cmu-313.github.io

Andrew Begel and Rohan Padhye

https://cmu-313.github.io/

Learning Goals

• Gain an understanding of the relative strengths and
weaknesses of static and dynamic analysis
• Examine several popular analysis tools and understand their

use cases
• Understand how analysis tools are used in large open-source

software

Administrivia

• Project P3 released Deployments, Analysis tools, Design Docs,
Feature Reviews
• Checkpoint due Oct 26th, Full Due Nov 2nd
• Will need your cloud accounts (GCP/Render)

• Reminder: Submit participation activities on Gradescope only if
you are attending in person. Cheating will result in AIVs.
• New: Record the name of person(s) sitting besides you with activity

• Guest Lecture next week (Oct 31) by Torgeir Dingsøyr on Agile
Team Effectiveness
• Required pre-class reading posted on website

Activity: Analyze the Python program statically
(Yes/No/Maybe)

def n2s(n: int, b: int):
 if n <= 0: return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u-10)
 n = n // b
 r = str(u) + r
 return r

1. What are the set of data types taken
by variable `u` at any point in the
program?

2. Can the variable `u` be a negative
number?

3. Will this function always return a
value?

4. Can there ever be a division by zero?

5. Will the returned value ever contain a
minus sign ‘-’?

What static analysis can and cannot do
• Type-checking is well established

• Set of data types taken by variables at any point
• Can be used to prevent type errors (e.g. Java) or warn about potential type errors (e.g. Python)

• Checking for problematic patterns in syntax is easy and fast
• Is there a comparison of two Java strings using `==`?
• Is there an array access `a[i]` without an enclosing bounds check for `i`?

• Reasoning about termination is impossible in general
• Halting problem

• Reasoning about exact values is hard, but conservative analysis via abstraction is possible
• Is the bounds check before `a[i]` guaranteeing that `I` is within bounds?
• Can the divisor ever take on a zero value?
• Could the result of a function call be `42`?
• Will this multi-threaded program give me a deterministic result?
• Be prepared for “MAYBE”

• Verifying some advanced properties is possible but expensive
• CI-based static analysis usually over-approximates conservatively

The Bad News: Rice’s Theorem
Every static analysis is necessarily incomplete, unsound, undecidable, or
a combination thereof
“Any nontrivial property about the language recognized by a Turing
machine is undecidable.”

6

Henry Gordon Rice, 1953

Static Analysis is well suited to detecting certain defects

• Security: Buffer overruns, improperly validated input…
• Memory safety: Null dereference, uninitialized data…
• Resource leaks: Memory, OS resources…
• API Protocols: Device drivers; real time libraries; GUI

frameworks
• Exceptions: Arithmetic/library/user-defined
• Encapsulation:
• Accessing internal data, calling private functions…

• Data races:
• Two threads access the same data without synchronization

Static Analysis: Broad classification

• Linters
• Shallow syntax analysis for enforcing code styles and formatting

• Pattern-based bug detectors
• Simple syntax or API-based rules for identifying common

programming mistakes
• Type-annotation validators
• Check conformance to user-defined types
• Types can be complex (e.g., “Nullable”)

• Data-flow analysis / Abstract interpretation)
• Deep program analysis to find complex error conditions (e.g., ”can

array index be out of bounds?”)

Static analysis can be applied to all attributes

• Find bugs
• Refactor code
• Keep your code stylish!
• Identify code smells
• Measure quality
• Find usability and accessibility issues
• Identify bottlenecks and improve performance

Activity: Analyze the Python program dynamically

def n2s(n: int, b: int):
 if n <= 0: return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u-10)
 n = n // b
 r = str(u) + r
 return r

print(n2s(12, 10))

1. What are the set of data types taken
by variable `u` at any point in the
program?

2. Did the variable `u` ever contain a
negative number?

3. For how many iterations did the while
loop execute?

4. Was there ever be a division by zero?

5. Did the returned value ever contain a
minus sign ‘-’?

Dynamic analysis reasons about
program executions
• Tells you properties of the program that were definitely

observed
• Code coverage
• Performance profiling
• Type profiling
• Testing

• In practice, implemented by program instrumentation
• Think “Automated logging”
• Slows down execution speed by a small amount

• Requires only source code

• Conservatively reasons about all possible
inputs and program paths

• Reported warnings may contain false
positives

• Can report all warnings of a particular class
of problems

• Advanced techniques like verification can
prove certain complex properties, but rarely
run in CI due to cost

• Requires successful build + test inputs

• Observes individual executions

• Reported problems are real, as observed by a
witness input

• Can only report problems that are seen. Highly
dependent on test inputs. Subject to false
negatives

• Advanced techniques like symbolic execution
can prove certain complex properties, but
rarely run in CI due to cost

Static Analysis vs Dynamic Analysis

Static Analysis

Tools for Static Analysis

Static analysis is a key part of continuous integration

Static analysis used to be an academic amusement; now
it’s heavily commercialized

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

https://github.com/marketplace

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

Static analysis is also integrated into IDEs

https://clang-analyzer.llvm.org

What makes a good static analysis tool?

• Static analysis should be fast
• Don’t hold up development velocity
• This becomes more important as code scales

• Static analysis should report few false positives
• Otherwise developers will start to ignore warnings and alerts, and quality will decline

• Static analysis should be continuous
• Should be part of your continuous integration pipeline
• Diff-based analysis is even better -- don’t analyse the entire codebase; just the changes

• Static analysis should be informative
• Messages that help the developer to quickly locate and address the issue
• Ideally, it should suggest or automatically apply fixes

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

(1) Linters: Cheap, fast, and lightweight static source analysis

https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important

Use linters to enforce style guidelines

Don’t rely on manual inspection during code review!

https://checkstyle.sourceforge.io/

Linters use very “shallow” static analysis
to enforce formatting rules
• Ensure proper indentation
• Naming convention
• Line sizes
• Class nesting
• Documenting public functions
• Parenthesis around expressions
• What else?

Use linters to improve maintainability

• Why? We spend more time reading code than writing it.
• Various estimates of the exact %, some as high as 80%

• Code is ownership is usually shared
• The original owner of some code may move on
• Code conventions make it easier for other developers to

quickly understand your code

Use Style Guidelines to facilitate communication

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008

Guidelines are inherently opinionated, but consistency is the important point.
Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008

Take Home Message:
Style is an easy way to improve readability
• Everyone has their own opinion (e.g., tabs vs. spaces)
• Agree to a convention and stick to it
• Use continuous integration to enforce it

• Use automated tools to fix issues in existing code

(2) Patten-based Static Analysis Tools

• Bad Practice
• Correctness
• Performance
• Internationalization
• Malicious Code
• Multithreaded Correctness
• Security
• Dodgy Code

http://findbugs.sourceforge.net/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html

SpotBugs can be extended with plugins

https://find-sec-bugs.github.io/

Bad Practice:

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
 System.out.println("x and y are the same!");
} else {
 System.out.println("x and y are different!");

}

Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
if (x.equals(y)) {
 System.out.println("x and y are the same!");
} else {
 System.out.println("x and y are different!");

}

Performance:

public static String repeat(String string, int times)
{
 String output = string;
 for (int i = 1; i < times; ++i) {
 output = output + string;
 }
 return output;

}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

The method seems to be building a String using concatenation in a loop. In each
iteration, the String is converted to a StringBuffer/StringBuilder, appended to, and
converted back to a String. This can lead to a cost quadratic in the number of
iterations, as the growing string is recopied in each iteration.

public static String repeat(String string, int times)
{
 String output = string;
 for (int i = 1; i < times; ++i) {
 output = output + string;
 }
 return output;

}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
 int length = string.length() * times;
 StringBuffer output = new StringBuffer(length);
 for (int i = 0; i < times; ++i) {
 output.append(string);
 }
 return output.toString();

}

Correctness:

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java
https://github.com/pbrune1973/qwics/issues/7

@Override
public Connection getConnection() throws SQLException {
 QwicsConnection con = new QwicsConnection(host, port);
 try {
 con.open();
 } catch (Exception e) {
 new SQLException(e);
 }
 return con;

}

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java

Correctness: Missing “throw” before “new Exception”

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java
https://github.com/pbrune1973/qwics/issues/7

@Override
public Connection getConnection() throws SQLException {
 QwicsConnection con = new QwicsConnection(host, port);
 try {
 con.open();
 } catch (Exception e) {
 throw new SQLException(e);
 }
 return con;

}

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java

Challenges

• The analysis must produce zero false positives
• Otherwise developers won’t be able to build the code!

• The analysis needs to be really fast
• Ideally < 100 ms
• If it takes longer, developers will become irritated and lose

productivity
• You can’t just “turn on” a particular check
• Every instance where that check fails will prevent existing code from

building
• There could be thousands of violations for a single check across

large codebases

Challenges

• The analysis must produce zero false positives
• Otherwise developers won’t be able to build the code!

• The analysis needs to be really fast
• Ideally < 100 ms
• If it takes longer, developers will become irritated and lose

productivity
• You can’t just “turn on” a particular check
• Every instance where that check fails will prevent existing code from

building
• There could be thousands of violations for a single check across

large codebases

(3) Use type annotations to detect common errors

• Uses a conservative analysis to prove the absence of certain
defects
• Null pointer errors, uninitialized fields, certain liveness issues,

information leaks, SQL injections, bad regular expressions, incorrect
physical units, bad format strings, …
• C.f. SpotBugs which makes no safety guarantees
• Assuming that code is annotated and those annotations are correct

• Uses annotations to enhance type system
• Example: Java Checker Framework or MyPy

https://checkerframework.org/

Annotations can be applied to types and declarations

// return value
@NonNull String toString() { ... }

// parameter
int compareTo(@NonNull String other) { ... }

// receiver ("this" parameter)
String toString(@Tainted MyClass this) { ... }

Detecting null pointer exceptions

• @Nullable indicates that an expression may be null
• @NonNull indicates that an expression must never be null
• Rarely used because @NonNull is assumed by default
• See documentation for other nullness annotations

• Guarantees that expressions annotated with @NonNull will
never evaluate to null, forbids other expressions from being
dereferenced

https://checkerframework.org/manual/#nullness-annotations

3
9

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
 public void example() {
 @NonNull String foo = "foo";
 String bar = null;

 foo = bar;
 }

}

4
0

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
 public void example() {
 @NonNull String foo = "foo";
 String bar = null;

 foo = bar;
 }

}

@Nullable is applied by
default

4
1

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
 public void example() {
 @NonNull String foo = "foo";
 String bar = null;

 foo = bar;
 }

}
Error: [assignment.type.incompatible] incompatible types in assignment.
 found : @Initialized @Nullable String
 required: @UnknownInitialization @NonNull String

@Nullable is applied by
default

4
2

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
 public void example() {
 @NonNull String foo = "foo";
 String bar = null; // @Nullable

 if (bar != null) {
 foo = bar;
 }
 }

}

bar is refined to
@NonNull

Is there a bug?

4
3

public String getDay(int dayIndex) {
 String day = null;
 switch (dayIndex) {
 case 0: day = "Monday";
 case 1: day = "Tuesday";
 case 2: day = "Wednesday";
 case 3: day = "Thursday";
 }
 return day;
}

public void example() {
 @NonNull String dayName = getDay(4);
 System.out.println("Today is " + dayName);

}

public String getDay(int dayIndex) {
 String day = null;
 switch (dayIndex) {
 case 0: day = "Monday";
 case 1: day = "Tuesday";
 case 2: day = "Wednesday";
 case 3: day = "Thursday";
 }
 return day;
}

public void example() {
 @NonNull String dayName = getDay(4);
 System.out.println("Today is " + dayName);

}

Is there a bug? Yes.

4
4

Error: [return.type.incompatible] incompatible types in return.
 type of expression: @Initialized @Nullable String
 method return type: @Initialized @NonNull String

Taint Analysis:
Prevents untrusted (tainted) data from reaching sensitive locations (sinks)

• Tracks flow of sensitive information through the program
• Tainted inputs come from arbitrary, possibly malicious

sources
• User inputs, unvalidated data

• Using tainted inputs may have dangerous consequences
• Program crash, data corruption, leak private data, etc.

• We need to check that inputs are sanitized before reaching
sensitive locations

4
5

Classic Example: SQL Injection

4
6

https://xkcd.com/327

Classic Example: SQL Injection

4
7

void processRequest() {
 String input = getUserInput();
 String query = "SELECT ... " + input;
 executeQuery(query);

}

Classic Example: SQL Injection

4
8

void processRequest() {
 String input = getUserInput();
 String query = "SELECT ... " + input;
 executeQuery(query);

}

Tainted input arrives from an untrusted source

Tainted input flows to a sensitive sink

Classic Example: SQL Injection

4
9

void processRequest() {
 String input = getUserInput();
 input = sanitizeInput(input);
 String query = "SELECT ... " + input;
 executeQuery(query);

}

Taint is removed by sanitizing the data

We can now safely execute query on untainted data

Taint Checker: @Tainted and
@Untainted

5
0

void processRequest() {
 @Tainted String input = getUserInput();
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...

}

Taint Checker: @Tainted and
@Untainted

5
1

void processRequest() {
 @Tainted String input = getUserInput();
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...

}

Indicates that data is tainted

Argument must be untainted

Guarantees that return value is untainted

Taint Checker: @Tainted and
@Untainted

5
2

void processRequest() {
 @Tainted String input = getUserInput();
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...

}

Indicates that data is tainted

Argument must be untainted

Guarantees that return value is untainted

Does this compile?

5
3

void processRequest() {
 @Tainted String input = getUserInput();
 input = validate(input);
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...

}

Input becomes @Untainted

Does this program compile?

void processRequest() {
 @Tainted String input = getUserInput();
 if (input.equals("little bobby drop tables")) {
 input = validate(input);
 }
 executeQuery(input);

}

Does this program compile? No.

void processRequest() {
 @Tainted String input = getUserInput();
 if (input.equals("little bobby drop tables")) {
 input = validate(input); // @Untainted
 }
 executeQuery(input); // @Tainted

}

https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

Units Checker identifies physical unit
inconsistencies
• Guarantees that operations are performed on the same

kinds and units
• Kind annotations
• @Acceleration, @Angle, @Area, @Current, @Length, @Luminance,

@Mass, @Speed, @Substance, @Temperature, @Time

• SI unit annotation
• @m, @km, @mm, @kg, @mPERs, @mPERs2, @radians, @degrees,

@A, ...

https://www.nist.gov/pml/weights-and-measures/metric-si/si-units

5
8

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;

}

5
9

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;

}

@m indicates that x represents meters

To assign a unit, multiply appropriate
unit constant from UnitTools

Does this program compile?

6
0

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;

}

@m indicates that x represents meters

To assign a unit, multiply appropriate
unit constant from UnitTools

Does this program compile? No.

6
1

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;

}

Addition and subtraction between
meters and seconds is physically
meaningless

Checker Framework: Limitations

• Can only analyze code that is annotated
• Requires that dependent libraries are also annotated
• Can be tricky, but not impossible, to retrofit annotations into existing

codebases

• Only considers the signature and annotations of methods
• Doesn’t look at the implementation of methods that are being called

• Dynamically generated code
• Spring Framework

• Can produce false positives!
• Byproduct of necessary approximations

Infer: What if we didn’t want annotations?

• Focused on memory safety bugs
• Null pointer dereferences, memory leaks, resource leaks, ...

• Compositional interprocedural reasoning
• Based on separation logic and bi-abduction

• Scalable and fast
• Can run incremental analysis on changed code

• Does not require annotations
• Supports multiple languages
• Java, C, C++, Objective-C
• Programs are compiled to an intermediate representation

6
3

https://fbinfer.com/
https://engineering.fb.com/2017/09/06/android/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/

https://fbinfer.com/

Beware of the inevitable false positives!

https://github.com/openssl/openssl/issues/6968

The best QA strategies employ a combination of tools

6
7

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

Summary

• Linters are cheap, fast, but imprecise analysis tools
• Can be used for purposes other than bug detection (e.g., style)

• Conservative analyzers can demonstrate the absence of
particular defects
• At the cost of false positives due to necessary approximations
• Inevitable trade-off between false positives and false negatives

• The best QA strategy involves multiple analysis and testing
techniques
• The exact set of tools and techniques depends on context

