QA: Analysis Tools

17-313 Fall 2023
Foundations of Software Engineering

https://cmu-313.github.io
Andrew Begel and Rohan Padhye

Software and Societal gflall.flegle
Systems Department ellon
Universi

https://cmu-313.github.io/

Learning Goals

« Gain an understanding of the relative strengths and
weaknesses of static and dynamic analysis

« Examine several popular analysis tools and understand their
use cases

« Understand how analysis tools are used in large open-source
software

Carnegie

Software and Societal Viell
Systems Department ellon
Universi

Administrivia

 Project P3 released Deployments, Analysis tools, Design Docs,
Feature Reviews

« Checkpoint due Oct 26th, Full Due Nov 2nd
 Will need your cloud accounts (GCP/Render)

» Reminder: Submit participation activities on Gradescope only if
you are attending in person. Cheating will result in AlVs.

« New: Record the name of person(s) sitting besides you with activity

« Guest Lecture next week (Oct 31) by Torgeir Dingsayr on Agile
Team Effectiveness

« Required pre-class reading posted on website

Software and Societal Carnegle
Systems Department Mellon

Universi

Activity: Analyze the Python program statically

(Yes/No/Maybe)
def n2s(n: int, b int): 1. What are the set of data types taken
if n <= 0: return '0’ by variable ‘u’ at any point in the
r=" program?
while n > 0: 2. Can the variable ‘u’ be a negative
u=n%b number?
if u>=10: . . .
T 0 3. Will this function always return a
u = chr(ord('A") + u-10) value?
n=n//b o
4. Can there ever be a division by zero?
r=str(u) +r
return r s. Will the returned value ever contain a
minus sign -’?
ware and Societa Carnegie
33D é;ﬁems De[()jasrtmefwtI Mellong

Universi

What static analysis can and cannot do

» Type-checking is well established
« Set of data types taken by variables at any point
« Can be used to prevent type errors (e.g. Java) or warn about potential type errors (e.g. Python)

Checking for problematic patterns in syntax is easy and fast
« Is there a comparison of two Java strings using "=="7
« Isthere an array access "a[i]" without an enclosing bounds check for "i*?

Reasoning about termination is impossible in general
« Halting problem

Reasoning about exact values is hard, but conservative analysis via abstraction is possible
« Is the bounds check before "a[i]” guaranteeing that "I is within bounds?
« Can the divisor ever take on a zero value?
« Could the result of a function call be "42°?
« Will this multi-threaded program give me a deterministic result?
« Be prepared for “MAYBE"

Verifying some advanced properties is possible but expensive
« Cl-based static analysis usually over-approximates conservatively

83 Software and Societal Carnegle

Systems Department

The Bad News: Rice's Theorem
Every static analysis is necessarily incomplete, unsound, undecidable, or
a combination thereof

“Any nontrivial property about the language recognized by a Turing

machine is undecidable.”
Henry Gordon Rice, 1953

D Software and Societal g/[alﬁrlegle
Systems Department elion
Universi

Static Analysis is well suited to detecting certain defects

 Security: Buffer overruns, improperly validated input...
« Memory safety: Null dereference, uninitialized data...
« Resource leaks: Memory, OS resources...

* APl Protocols: Device drivers: real time libraries; GUI
frameworks

« Exceptions: Arithmetic/library/user-defined

« Encapsulation:
« Accessing internal data, calling private functions...

« Data races:
« Two threads access the same data without synchronization

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Static Analysis: Broad classification

e Linters
 Shallow syntax analysis for enforcing code styles and formatting

 Pattern-based bug detectors
 Simple syntax or APIl-based rules for identifying common
programming mistakes
 Type-annotation validators
» Check conformance to user-defined types
» Types can be complex (e.g., “Nullable”)

 Data-flow analysis / Abstract interpretation)

» Deep program analysis to find complex error conditions (e.g., "can
array index be out of bounds?”)

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Static analysis can be applied to all attributes

* Find bugs

 Refactor code

« Keep your code stylish!

* |[dentify code smells

Measure quality

* Find usability and accessibility issues

» |[dentify bottlenecks and improve performance

Software and Societal Carnegle
Systems Department 2 .

Activity: Analyze the Python program dynamically

def n2s(n: int, b: int): 1. What are the set of data types taken

if n <= 0: return '0' by variable “u" at any point in the
r=" program?
while n>0: 2. Did the variable "u’ ever contain a
u=n%b negative number?
if u>=10:
ifu>=10 . 3. For how many iterations did the while
u = chr(ord('A') + u-10) loop execute?
n=n//b L
4. Was there ever be a division by zero?
r=str(u) +r
return r s. Did the returned value ever contain a

_ minus sign -'?
print(n2s(12, 10))

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Dynamic analysis reasons about
program executions

» Tells you properties of the program that were definitely
observed
« Code coverage
« Performance profiling
 Type profiling
 Testing

e In practice, implemented by program instrumentation
« Think “Automated logging”
» Slows down execution speed by a small amount

Software and Societal Carnegle
Systems Department z .

Static Analysis vs Dynamic Analysis

* Requires only source code * Requires successful build + test inputs

* Conservatively reasons about all possible * Observes individual executions
inputs and program paths

* Reported warnings may contain false * Reported problems are real, as observed by a
positives witness input

e Can only report problems that are seen. Highly
* Can report all warnings of a particular class dependent on test inputs. Subject to false
of problems negatives

* Advanced techniques like symbolic execution
* Advanced techniques like verification can can prove certain complex properties, but
prove certain complex properties, but rarely rarely run in Cl due to cost
run in Cl due to cost

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Static Analysis

33D Software and Societal Carnegie
Systems Department Mellon
Universi

Tools for Static Analysis
@
o Cwsv w

&: my[py] a snyk sonarqube\\\

. »
() coverity’ squale
SYNOPSYS' '

Softwar
3D Systems Dep tttttt

Static analysis is a key part of continuous integration

</>
q

®E P

®O—0— 000
BUILD UNIT |INTEGRATION
TESTS TESTS

CI PIPELINE

RELATED CODE

®
O

G Travis ClI 00

GitHub Actions

D Software and Societal Carnegle
Systems Department Me!lon .
Universi

Static analysis used to be an academic amusement; now
it's heavily commercialized

GitHub acquires code analysis tool Semmle Mg sesnTests News

S oo Snyk Secures $150M, Snags $1B
d Apps Valuatlon

Actions
Build on your workflow with apps that integrate with GitHub.

Share this article:

306 results filtered by | Apps | Sydney Sawaya | Associate Editor
Categories
Q0000600

APl management > WhiteSource Bolt &

> ent that lets the entire Detect oj tties in real
Chat on GitHub ed fixes for quick
Code quality

2 Crowdin Slack + GitHub
Code review « Agile localization for your projects @%, Connect your code without leaving Slack
Continuous integration

BackHub GitLocalize)

Dependency managerment V= Reliable GitHub repository ba B8} Gortiruonie Coosicaiion for Rt projects
Deployment mingtes

IDEs Codacy @& e
Automated code o help developers (&
Learning ship better software, faster

Localization o Semaphore ©
e b Test and deploy at the push of a bution t c
Monitoring & el
Project management DeepScan) Depfu @

Advance for automatically Automated dependency updates done right
Publishing finding Script code

Snyk, a developer-focused security startup that and Identifies vulnerabilities in open source applications,

° announced a $150 million Serles C funding round today. This brings the company'’s total iInvestment to
G It H u b $250 million alongside reports that put the company’s valuation at more than $1 billion.

3 D Software and Societal Carnegle

Systems Department

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

Static analysis is also integrated into IDES

“ D=

c++ Cppcoreguidelines.cpp

// To enable only C++ Core Guidelines checks

2 // go to Settings/Preferences | Editor | Inspections | C/C++ | Clang-Tidy

3 // and provide: —,cppcoreguidelines—* in options

4

5 void fill_pointer(intx arr, const int num) {

6 for(ipt i = 0; i < num; ++i) {

7 arr[i] = 0;

8 h e

9 | Do not use pointer arithmetic
10
11 void fill_array(int ind) {
v ;::[ai;g][3l Z_{1'2'3}; o o et e s-site Scripting (XSS)
13 = 0; 5 high 9 medium
15
16 void cast_away_const(const int& magic_num) -
18 const_cast<int&>(magic_num) = 42; 3
19 } 5
20 2

110w
9 high | 21 medium | 25 low 8
critical | 66 high | 56 medium | 142 low 9

33 D Software and Societal https://clang-analyzer.llvm.org Carnegle

Systems Department

What makes a good static analysis tool?

Static analysis should be fast
« Don't hold up development velocity
« This becomes more important as code scales

Static analysis should report few false positives
« Otherwise developers will start to ignore warnings and alerts, and quality will decline

Static analysis should be continuous
« Should be part of your continuous integration pipeline
- Diff-based analysis is even better -- don't analyse the entire codebase; just the changes

Static analysis should be informative

« Messages that help the developer to quickly locate and address the issue
- ldeally, it should suggest or automatically apply fixes

83 D Software and Societal https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext Carnegle

Systems Department

(1) Linters: Cheap, fast, and lightweight static source analysis

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Use linters to enforce style guidelines

Don't rely on manual inspection during code review!

g\§, & RuboCop @

o @ python’
o Javar ‘

Software and Soc t | https://checkstyle.sourceforge.io Carnegie
83D Systems D epar tm I :

Linters use very “shallow” static analysis
to enforce formatting rules

« Ensure proper indentation
 Naming convention

* Line sizes

e Class nesting

« Documenting public functions

« Parenthesis around expressions
* What else?

Software and Societal Carnegie
S3D e separiment lon

Use linters to improve maintainability

* Why? We spend more time reading code than writing it.
« Various estimates of the exact %, some as high as 80%

« Code is ownership is usually shared
* The original owner of some code may move on

« Code conventions make it easier for other developers to
quickly understand your code

Software and Societal Carnegle
Systems Department z .

Use Style Guidelines to facilitate communication

Python

& python’

About

Tweets by @Thepsr

@@ Python Software Foundation &
@epsF
We encourage youto contibute o our
‘community's knowledge by taking part in
the offcial Python Survey 2020, organized
in partnership between @ThePSF &
Jetrains. Share, learm, and vin prizes! The
survey should only take you about 10 min.
o complete. surveys fetbrains,coms3/c12
python

Python Developers S...

Eb Join and contibute to'.

surveys jetbrains.com

@ Python Software Foundation &

Hey, Pythonistas, have you already joined
the Python Developers Survey 20202
Surveys jetbrains. coms3/c12-python-

Embed View on Twitter

The PSF

The Python Software Foundation

Downloads Documentation Community Success Stories News

Python » Python Developer's Guide » PEP Index) PEP 8 -- Style Guide for Python Code

PEP 8 -

Style Guide for Python Code

PEP: 8

Title: Style Guide for Python Code

Author: Guido van Rossum <guido at python.org>, Barry Warsaw <barry at python.org>, Nick
gmail.com>

Status: Active

Type: Process

Created: 05-Jul-2001

Post- 05-Jul-2001, 01-Aug-2013

Contents

- = Introduction

= AFoolish Consistency is the Hobgoblin of Little Minds
+ Code Lay-out

« Indentation

= Tabs or Spaces?

« Maximum Line Length

= Should a Line Break Before or After a Binary Operator?

Style Guidelines

‘This document collects the emes
Rust code.

rinciples, conventions, abstractions, and best practices for writing

Since Rust s evolving at a rapid pace, these guidelines are preliminary. The hope s that writing them
down explicitly will help drive discussion, consensus

adoption.

Whenever feasible, guidelines provide specific cxamples from Rust's standard libraris.

Guideline statuses

ideline has a status:

 [FIXME]: Marks places where there is more work to be done. In some cases, that just means going
through the RFC procss.

® [FIXME #NNNNNJ: Like [FIXME], but links to the issue tracker.
® [RFC #NNNN]: Marks accepted guidelines, linking to the rust-lang RFC establishing them.
Guideline stabilization

One purpose of these guidelines is to reach decisions on a number of cross-cutting APl and stylistic
choices. Discussion and development of the guidelines will happen primarily on hitp:/discuss.rus:

lung ore/, using the Guidelines category. Discussion can also occur on th

delines issue tracker

Guidelines tha

are under development or discussion will be marked with the status [FIXME, with a
link to the issue tracker when appropriate.

Once a concrete guideline is ready to be proposed, it should be filed as an FIXME: needs RFC. If the

REC is accepted. the official guidelines will be updated to match, and will include the tag [RFC
#NNNN] linking to the RFC document

What's in this document
This document is broken into four pars:

® Style provides a set of rules governi convent

whitespace, and other stylistic issues.

© Guideli

s by Rust feature places the focus on each of Rusts features, starting from expressions
and working the way out toward crates, dispensing guidelines relevant (o cach.

» Topical guidelines and patterns. The rest of the document proceeds by cross-cutting topic, starting
with Ow

ership and resources.

 APIS for a changing Rust discusses the forward-compatibility hazards, espect

ally those that

interact with the pre-1.0 library stabilization process.

The
Chicago
Manual

of Style

THE ESSENTIAL GUIDE
for Writers, Editors, and Publishers

Guidelines are inherently opinionated, but consistency is the important point.
Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008

Software and Societal

Systems Department

Carnegie

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008

Take Home Message:
Style is an easy way to improve readability

 Everyone has their own opinion (e.g., tabs vs. spaces)

« Agree to a convention and stick to it
« Use continuous integration to enforce it

« Use automated tools to fix issues in existing code

Software and Soc t | Carnegie
S sisieme oparime lon

(2) Patten-based Static Analysis Tools SP@{BUQS

. e\qgnsln
» Bad Practice L —
18 56
1,5+ //Q Thls document lists the standard bug patterns reported by FindBugs version 3.0.1.
ARYLNS
Summary
FlndBu s
because it's easy Description Category
. O r r e Ct n e S S BC: Equals method should not assume anything about the type of its argument Bad practice
Docs and Info Check for sign of bitwise operation Bad practice
FindBugs 2.0 CN: Class implements Cloneable but does not define or use clone method Bad practice
3::: ::: ::"‘ rters CN: clone method does not call super.clone() Bad practice
FindBugs m;;po CN: Class defines clone() but doesn't implement Cloneable Bad practice
Fact shoot CNT: Rough value of known constant found Bad practice
Manual Co: Abstract class defines covariant compareTo() method Bad practice
. Manual(ja/H#58) Co: compareTo()/compare()_incorrectly handles float or double value Bad practice
o Co: compareTo()/compare() returns Integer.MIN VALUE Bad practice
B"q d::Z:pE:::(inIEtﬁ) Co: Covariant compareTo() method defined Bad practice
Bﬁ descn::n‘ons(m =" DE: Method might drop exception Bad practice
Mailing lists DE: Method might ignore exception Bad practice

Documents and Publications DMI: Adding elements of an entry set may fail due to reuse of Entry objects Bad practice

Links DML Random object created and used only once Bad practice

[] ° °
DML: Don't use removeAll to clear a collection Bad practice
Downloads Dm: Method invokes System.exit(...) Bad practice
Dm: Method invokes dangerous method runFinalizersOnExit Bad practice

Rt R ES: Comparison of String parameter using Bad practice
ES: Comparison of String obj -

Development ES: Comparison of String objects using == or 1= Bad practice

Open bugs Eq: Abstract class defines covariant equals) methm:l Bad practice

Bad practice

. o Reporting bugs Eq: Equals checks for incompatible operand
a I C I O l I S O e Contributing Eq: Class defines compareTo(...) and uses Object.equals() Bad practice
Dev team Eq: equals method fails for subtypes Bad practice
ARLIRe e Eq: Covariant equals() method defined i

Erempry Bad practice

SF project page FL: Empty finalizer should be deleted Bad practice

Browse source EL Explicit invocation of finalizer Bad practice

Latest code changes FI: Finalizer nulls fields Bad practice

M FL: Finalizer only nulls fields Bad practice

. l I t I t r e . e O r r e C t n e S S FI: Finalizer does not call superclass finalizer Bad practice
FI: Finalizer nullifies superclass finalizer Bad practice

FI: Finalizer does nothing but call superclass finalizer Bad practice

FS: Format string should use %n rather than \n Bad practice

GC: Unchecked type in generic call Bad practice

° HE: Class defines equals() but not hashCode() Bad practice

HE: Class defines equals() and uses Object.hashCode(), Bad practice

. HE: Class defines hashCode() but not equals() Bad practice
HE: Class defines hashCode() and uses Object.equals(). Bad practice

HE: Class inherits equals() and uses Object.hashCode() Bad practice

IC: Superclass uses subclass during initialization Bad practice

IMSE: Dubmus catching of ion Bad practice

ISC: iation of class that only supplies static methods Bad practice

It: Iterator next() method can't throw NoSuchElementException Bad practice

. O O e 2EE: Store of non serializable object into HttpSession Bad practice
CIP: Fields of immutable classes should be final Bad practice

ME: Public enum method unconditionally sets its field Bad practice

P TF I, Softyvare and i Carnegle

wi2C

https://@@!doﬁ?go@m c{]jerp’aatmdhugDescriptions tml

http://findbugs.sourceforge.net/bugDescriptions.html

SpotBugs can be extended with plugins

“# InsecureBankv2 - [C:\Code\Android-I

2\Insec 2_studio] - [app] - ..\app\src\main\java\com\android\insecurebank.. - & El

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

"3 InsecureBankv2_studio » 3 app » [src » 21 main » [java » 51 com) [android) [51 insecurebankv2 » (€ DoTransfer

8 [C build] > ¥ B

» [Cipher with no integrity (2 items)
v [External File Access (Android) (4 items)
v [External File Access (Android) (4 items)

. ® Files could be saved to external storage. | Code at risk:
g € Files could be saved to external storage.
§ € Files could be saved to external storage.
= € Files could be saved to external storage.
a » [1 WebView with JavaScript Enabled (Android) (1 ite fos.flush();
- » [Potential Path Traversal (File Write) (2 items) Better alternative:
» [Broadcast (Android) (1 item)
gl x =
gl 2 R
El 7 % eferences o .
& CERT: DRDO00-J: Do not store sensitive information on external storage [...]
* A rdemint (il Man | Ininn $ha Fibarmal Cbnrnnn

4 B Project = € = | %~ I* |lass x | (C) ChangePassword,java X l C) CryptoClass,java X l © LoginActivity.java X ‘ C DoTransferjava % !_g
£+ [InsecureBankv2_studio (' Cocc fndioid-inec try 1 mlg
=i » [.idea jsonObject = new JSONObject (result); 3
" v mipp accl = jsonObject.getString("from"); - §
» [build acc2 = jsonObject.getString("to"); -2

g - System.out.println("Message:" + jsonObject.getString("message") + " From:" + t'rom.("
g =L 3 final String status = new String("\nMessage:" + "Success" + " From:" + from.getTex _ (/M
= v [main 9 try [- 5
&3 > & assets 7 for Trans hist i
v v [ljava e String MYFILE = Environment.getExternal Di v().+ "/Sta 2
v [E1 com.android.insecurebankv2 s BufferedWriter out2 = new BufferedWriter(new FileWriter (MYFILE, true)): “5
© B ChangePassword out2.write(status); -

ant2.clnse () : -
@
FindBugs-IDEA FindBugs Analysis Results - L g
‘|v &l InsecureBankv2 (found 14 bug items in 59 clas 5 2

v (@) Security (14 items)]) 2

> [StaticlV (2 items) External File Access (Android) 5

» [Cipher is susceptible to padding oracle attack (2 i The ;pplication V\(rite F}alg to extefnal §toragg (potentially SD card). Thefe are =4

multiple security implication to this action. First, file store on SD card will be B

accessible to the application having the READ_EXTERNAL_STORAGE permission.
Also, ifthe data persisted contains confidential information about the user,
encryption would be needed.

ETODO & Android Terminal = & FindBugs-IDEA

Event Log [£] Gradle Console M Memory Monitor

203:38 LF: UTF-8+ &

D Software and Societal
Systems Department

€ 138 bug patterns

It can detect 138 different vulnerability types with over
820 unique API signatures.

& Continuous integration

Can be used with systems such as Jenkins and

SonarQube.

{3} Find Security Bugs

The SpotBugs plugin for security audits of Java web applications.

& Download version 1.11.0 ! View release notes

(Last updated: October 29th, 2020)

Features

</> Support your frameworks and
libraries

Cover popular frameworks including Spring-MVC, Struts,
Tapestry and many more.

« OWASP TOP 10 and CWE coverage

Extensive references are given for each bug patterns with
references to OWASP Top 10 and CWE.

Screenshots

Eclipse IntelliJ / Android Studio

OWASP Find Security Bugs 1.11.0 - Created by Philippe Arteau

Licensed under LGPL

Spread the word:

Follow the project:
) star 1,504

) Fork 354
© Visit the GitHub project

& Integrate with your IDE

Plugins are available for Eclipse, IntelliJ, Android Studio
and NetBeans. Command line integration is available
with Ant and Maven.

©) Open for contributions

The project is open-source and is open for contributions.

Sonar Qube

https://find-sec-bugs.github.io/

Carnegie

Bad Practice:

String x = new String("Foo");
String y = new String("Foo");

if (x==y){
System.out.printIn("x and y are the same!");
} else {
System.out.println("x and y are different!");
}
SN gz oo Vidion

Universi

Bad Practice: ES_ COMPARING_STRINGS WITH_EQ
Comparing strings with ==

String x = new String("Foo");
String y = new String("Foo");

if (x.equals(y)) {
System.out.printIn("x and y are the same!");

}else {
System.out.printin("x and y are different!");
' Carnegie
Q3 Sotveregnd o Carnes

Universi

Performance:

public static String repeat(String string, int times)

{
String output = string;
for (inti=1;i<times; ++i) {
output = output + string;

return OUtpUt,’
) Carnegie
S3D S veparment Mellor,

Universi

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
String output = string;
for (inti=1;i<times; ++i) {
output = output + string;

)

. The method seems to be building a String using concatenation in a loop. In each
return OUtpUt’ iteration, the String is converted to a StringBuffer/StringBuilder, appended to, and
} converted back to a String. This can lead to a cost quadratic in the number of
iterations, as the growing string is recopied in each iteration.

Software and Societal Carnegle
Systems Department Mellon

Universi

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
int length = string.length() * times;
StringBuffer output = new StringBuffer(length);
for (inti=0;i<times; ++i) {
output.append(string);

return output.toString();
. Carnegie
S3D eems vepariment Mellon

Universi

Correctness:

@Override
public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);
try {
con.open();
} catch (Exception e) {
new SQLException(e);
}

return con;

)

SSD Software and Sec : €6/ Carnegle
https://github.com/pbrune1973/qwics/issues /7

Systems Department

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java

Correctness: Missing “throw” before “new Exception”

@Override
public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);

try {
con.open();

} catch (Exception e) {
throw new SQLException(e);

}

return con;

SOBEIREN e https://github.com/pbrune1973/qwics/issues /7 Carnegle
Systems Department PEEERES: ° : 5 .

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java

Challenges

* The analysis must produce zero false positives
« Otherwise developers won't be able to build the code!

* The analysis needs to be really fast

* |deally <100 ms

- If it takes longer, developers will become irritated and lose
productivity

« You can't just “turn on” a particular check
. lI:E)velr ‘instance where that check fails will prevent existing code from
uilding
« There could be thousands of violations for a single check across
large codebases

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Challenges

* The analysis must produce zero false positives
« Otherwise developers won't be able to build the code!

* The analysis needs to be really fast

* |deally <100 ms

- If it takes longer, developers will become irritated and lose
productivity

« You can't just “turn on” a particular check
. lI:E)velr ‘instance where that check fails will prevent existing code from
uilding
« There could be thousands of violations for a single check across
large codebases

Software and Societal g[all'lnegle
Systems Department ellon
Universi

(3) Use type annotations to detect common errors

 Uses a conservative analysis to prove the absence of certain
defects

 Null pointer errors, uninitialized fields, certain liveness issues,
information leaks, SQL injections, bad regular expressions, incorrect
physical units, bad format strings, ...

 C.f. SpotBugs which makes no safety guarantees
« Assuming that code is annotated and those annotations are correct

» Uses annotations to enhance type system

« Example: Java Checker Framework or MyPy
CHECKER

framework

330 Software and Societal https://checkerframework.org/

Systems Department

Carnegie

Annotations can be applied to types and declarations

// return value
@NonNull String toString() { ... }

// parameter
int compareTo(@NonNull String other) { ... }

// receiver ("this" parameter)
String toString(@Tainted MyClass this) { ... }

Software and Societal g[all'lnegle
Systems Department elion

Universi

Detecting null pointer exceptions

« @Nullable indicates that an expression may be null

« @NonNull indicates that an expression must never be null
 Rarely used because @NonNull is assumed by default
« See documentation for other nullness annotations

« Guarantees that expressions annotated with @NonNull will
never evaluate to null, forbids other expressions from being
dereferenced

33 D Software and Societal https://checkerframework.org/manual/#nullness-annotations Carnegle

Systems Department

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {
@NonNull String foo = "foo";
String bar = null;

foo = bar;

}

D Software and Societal Carnegle
Systems Department . .

o &

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {

@NonNull String foo = "foo"; @Nullableis appIiEd by

String bar = null; - default
foo = bar;
}
}
Software and Societal Carnegie
33D Systems Department Mellon

Universi

—

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {

@NonNull String foo = "foo"; @Nullable is applied by
String bar = null; ~—————_default
fociﬁJar; |
} Error: [assignment.type.incompatible] incompatible types in assignment.
} found : @Initialized @Nullable String
required: @Unknownlnitialization @NonNull String

Software and Societal Carnegle
Systems Department 2 .

N

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {
@NonNull String foo = "foo",;
String bar = null; // @Nullable

’ bar is refined to

if (bar !=null) { -, @NonNull
foo = bar;
}
}
}
. Carnegie
S3D S cepmement Mellon

Universi

w

Is there a bug?

public String getDay(int daylndex) {
String day = null;
switch (daylndex) {
case 0: day = "Monday";
case 1: day = "Tuesday";
case 2: day = "Wednesday";
case 3: day = "Thursday";
}

return day;

}

public void example() {
@NonNull String dayName = getDay(4);
System.out.printin("Today is " + dayName);

}

Carnegie

D Software and Societal
Systems Department

e

Is there a bug? Yes.

public String getDay(int daylndex) {
String day = null;
switch (daylndex) {
case 0: day = "Monday";
case 1: day = "Tuesday";
case 2: day = "Wednesday";
case 3: day = "Thursday";

} |
return day; Error: [return.type.incompatible] incompatible types in return.
} type of expression: @Initialized @Nullable String
method return type: @Initialized @NonNull String

public void example() {
@NonNull String dayName = getDay(4);
System.out.printin("Today is " + dayName);

}

Software and Societal Carnegle
Systems Department Me!lon :
Universi

Taint Analysis:
Prevents untrusted (tainted) data from reaching sensitive locations (sinks)

* Tracks flow of sensitive information through the program

 Tainted inputs come from arbitrary, possibly malicious
sources

« User inputs, unvalidated data

 Using tainted inputs may have dangerous consequences
« Program crash, data corruption, leak private data, etc.

« We need to check that inputs are sanitized before reaching
sensitive locations

Software and Societal g[all'lnegle
Systems Department elion

Universi

(@)}

Classic Example: SQL Injection

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

Software and Soc tI
3DSytm s Depar tm

OH, DEAR — DID HE
BREAK SOMETHING?

IN A WAY

%4

!

DID YOU REALLY
NAME YOUR SON
Robert'); DRORP
JABLE Students;-~ 7

~OH.YES UTTE
BOBRY TARLES,
WE CALL HIM.

WELL WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
t TOSANITIZE YOUR
DATARASE INPUTS,

https://xkcd.com/327

Carnegie

|

Classic Example: SQL Injection

void processRequest() {
String input = getUserlnput();
String query = "SELECT ... " + input;

executeQue ry(q ue ry);
) Carnegie
S3D S veparment Mellor,

Universi

(00

Classic Example: SQL Injection

Tainted input arrives from an untrusted source

void processRequest() {
String input = getUserlnput();
String query = "SELECT ... " + input;

executeQuery(query);
Tainted input flows to a sensitive sink
. Carnegie
Q3D S samerenen: Nellon

Universi

(o)

Classic Example: SQL Injection

Taint is removed by sanitizing the data

void processRequest() {
String input = getUserInput();
input = sanitizelnput(input);
String query = "SELECT ... " + input;

executeQuery(query); -y
} We can now safely execute query on untainted data
. Carnegie
Q3D S samerenen: Nellon

Universi

o un

Taint Checker: @Tainted and
@Untainted

void processRequest() {
@Tainted String input = getUserlnput();
executeQuery(input);

}

public void executeQuery(@Untainted String input) {

// ...
J

@Untainted public String validate(String userinput) {
// ...

}

Software and Societal g[all'lnegle
Systems Department elion

Universi

Taint Checker: @Tainted and
@Untainted

void processRequest() {
@Tainted Stringiinput = getUserlnput();
executeQuery(input);

Indicates that data is tainted

} Argument must be untainted
P
public void executeQuery(@Untainted String input) {
// ...
}

Guarantees that return value is untainted
I

@Untainted public String validate(String userinput) {
// ...

}

Software and Societal gflall.flegle
Systems Department elion

Universi

Taint Checker: @Tainted and
@Untainted

void processRequest() { S
@Tainted String-input = getUserlnput();

executeQuery(input);

Indicates that data is tainted

} Argument must be untainted
public void executeQuery(@Untainted String input) {

// ...
}

Guarantees that return value is untainted
I

@Untainted public String validate(String userinput) {
// ...

Does this compile?

larnegie

ba lJ Systems Department

void processRequest() {

@Tainted String input = getUserlnput();

input = validate(input);

executeQuery(input); T—
}

Input becomes @Untainted

public void executeQuery(@Untainted String input) {

// ...
}

@Untainted public String validate(String userlnput) {
/] ...

}

Software and Societal g[all'lnegle
Systems Department elion

Universi

Does this program compile?

void processRequest() {
@Tainted String input = getUserlnput();
if (input.equals("little bobby drop tables")) {
input = validate(input);

executeQuery(in put);
) Carnegie
S3D S veparment Mellor,

Universi

Does this program compile? No.

void processRequest() {
@Tainted String input = getUserlnput();
if (input.equals("little bobby drop tables")) {
input = validate(input); // @Untainted

}
executeQuery(input); // @Tainted

}

Software and Societal
Systems Department

Carnegie
Mellon
Universi

*MeTRIC, ENCLSH WHATEVER.."

Remember the Mars Climate Orbiter incident from 1999?

y sl M SEH lE Blog Product v Solutions Learning v Public Projects Case Studies Careers Pricing LogIn Sign Up

When NASA Lost a Spacecraft Due to

a Metric Math Mistake

vvvvvvvvvvv UPDATED ON APPROX READING TIME
Ajay Harish March 10th, 2020 11 Minutes

Blog > CAE Hub > When NASA Lost a Spacecraft Due to a Metric Math Mistake

In September of 1999, after almost 10 months of travel to Mars, the Mars Climate Orbiter burned
and broke into pieces. On a day when NASA engineers were expecting to celebrate, the ground
reality turned out to be completely different, all because someone failed to use the right units,
i.e., the metric units! The Scientific American Space Lab made a brief but interesting video on this

very topic.

NASA’S LOST SPACECRAFT

The Metric System and NASA's Mars Climate Orbiter

The Mars Climate Orbiter, built at a cost of $125 million, was a 338-kilogram robotic space probe
launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and
surface changes. In addition, its function was to act as the communications relay in the Mars
Surveyor ‘98 program for the Mars Polar Lander. The navigation team at the Jet Propulsion

Laboratory (JPL) used the metric system of millimeters and meters in its calculations, while

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

33 D Software and Societal https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

Systems Department

Carnegie

Units Checker identifies physical unit
Inconsistencies

« Guarantees that operations are performed on the same
kinds and units

e Kind annotations

« @Acceleration, @Angle, @Area, @Current, @Length, @Luminance,
@Mass, @Speed, @Substance, @Temperature, @Time

S| unit annotation
« @M, @km, @mm, @kg, @mPERs, @mPERs2, @radians, @Aacraac

@A, ... \ ‘e /
D,

Software and Societal https://www.nist.gov/pml/weights-and-measures/metric-si/si-units Carnegle
83D Systems Department

(9

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@mint x;
X=5*m;

@m int meters =5 * m;
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Software and Societal Carnegle
Systems Department 2 .

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m intx; —_—

X=5%*m;

__To assign a unit, multiply appropriate
@m int meters =5 * m; unit constant from UnitTools
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Software and Societal g[all'lnegle
Systems Department elion

Universi

(@)}

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m intx; —_——

X=5%*m;

__To assign a unit, multiply appropriate
@m int meters =5 * m; unit constant from UnitTools
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Software and Societal gflall.flegle
Systems Department elion

Universi

Does this program compile? No.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@mint x;
X=5*m;

@m int meters =5 * m;
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Addition and subtraction between
meters and seconds is physically
meaningless

Carnegie
Mellon

Software and Societal
Systems Department

Universi

Checker Framework: Limitations

« Can only analyze code that is annotated
« Requires that dependent libraries are also annotated

 Can be tricky, but not impossible, to retrofit annotations into existing
codebases

« Only considers the signature and annotations of methods
« Doesn’t look at the implementation of methods that are being called

« Dynamically generated code
 Spring Framework

« Can produce false positives!
« Byproduct of necessary approximations

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Infer: What if we didn't want annotations?

» Focused on memory safety bugs
* Null pointer dereferences, memory leaks, resource leaks, ...

« Compositional interprocedural reasoning
« Based on separation logic and bi-abduction

» Scalable and fast
« Can run incremental analysis on changed code

- Does not require annotations _ @ " \B
 Supports multiple languages

e Java, C, C++, Objective-C

* Programs are compiled to an intermediate representation

Software and Societal
Systems Department https://engineering.fb.com/2017/09/06/android/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/

https://fbinfer.com/

Examples

Infer's cost analysis statically estimates the execution cost of a program without running the code. For instance, assume that we had
the following program:

void loop(ArrayList<Integer> list){
for (int i = 0; i <= list.size(); i++){

NULLPTR_DEREFERENCE

Reported as "Nullptr Dereference" by pulse.

Infer reports null dereference bugs in Java, C, C++, and Objective-C when it is possible that the null pointer is dereferenced, leading
to a crash.

Null dereference in Java

Many of Infer's reports of potential Null Pointer Exceptions (NPE) come from code of the form

p = fool);
stuff();
p.goo();

Software and Societal Carnegle
Systems Department z .

S3D

Software and Societal
Systems Department

INVARIANT_CALL

Reported as "Invariant Call" by loop-hoisting.
We report this issue type when a function call is loop-invariant and hoistable, i.e.

» the function has no side side effects (pure)
» has invariant arguments and result (i.e. have the same value in all loop iterations)

e itis guaranteed to execute, i.e. it dominates all loop sources

int foo(int x, int y) {

return x + y;
1
}

void invariant_hoist(int size) {
int x = 10;
int y = 5;
for (int 1 = 0; 1 < size; i++) {
foo(x, y);

Carnegie

Beware of the inevitable false positives!

& openssl/ openssl QOsponsor @Watch v | 906 fyStar 142k Y Fok = 63k

<> Code Q@ Issues 1.2k i1 Pullrequests 251 () Actions [T Projects 2 [0 Wiki) Security

Consider using Facebook's "infer" static analysis tool #6968 ZES
richsalz opened this issue on Aug

—@ dot-asm commented on Sep 2, 2018 Contributor (&) +*

I'm not impressed. Majority, >2/3 of reports are DEAD STORE and most common reason is last
*ptr++ . More specifically ++ is viewed problematic because pointer is not used anymore. The
post-increment is also customarily part of macro, so that in order to address this, one would have
to have two macros, one that leaves pointer post-incremented and one that doesn't. It would be

excessive and doesn't help readability.

Majority of MEMORY _LEAK reports is because it fails to recognize for example
EVP_MD_CTX free as resource freeing. This is counter-productive, one has to work too hard look
for real ones. There seem to be couple in test/*... Then there is some hairy stuff in o_names.c:236,
maybe false positive... Oh! There seem to be real leak in ssI3_final_finish_mac(), multiple logical
errors...

Carnegie

Systems Department

SsD Software and Societal https://github.com/openssl/openss|/issues/6968

(@)}

The best QA strategies employ a combination of tools

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib

andrew.a.habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defects4] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i) static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static
detectors shows that some bugs could have been found by variants
of the existing detectors, while others are domain-specific problems
that do not match any existing bug pattern. These findings help
potential users of such tools to assess their utility, motivate and out-
line directions for future work on static bug detection, and provide
a basis for future comparisons of static bug detection with other
bug finding techniques, such as manual and automated testing.

Software and Societal
Systems Department

Michael Pradel

michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE '18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.3238213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-
proach is to identify bugs during the development process, e.g.,
through pair programming or code review. Another direction is
testing, ranging from purely manual testing over semi-automated
testing, e.g., via manually written but automatically executed unit
tests, to fully automated testing, e.g., with Ul-level testing tools.
Once the software is deployed, runtime monitoring can reveal so
far missed bues. e.g.. collect information about abnormal runtime

Tool Bugs

Error Prone 8
Infer 5
SpotBugs 18

Total: 31

Total of 27 unique bugs

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

SpotBugs
14
2 2
0
6 0 3
Error Prone Infer

Figure 4: Total number of bugs found by all three
checkers and their overlap.

static

Carnegie

Summary

* Linters are cheap, fast, but imprecise analysis tools
« Can be used for purposes other than bug detection (e.g., style)

« Conservative analyzers can demonstrate the absence of
particular defects

At the cost of false positives due to necessary approximations
* Inevitable trade-off between false positives and false negatives

* The best QA strategy involves multiple analysis and testing
techniques
« The exact set of tools and techniques depends on context

Software and Societal g[all'lnegle
Systems Department ellon
Universi

