
QA: Advanced Automated 
Testing and Dynamic 

Analysis
17-313 Fall 2023

Foundations of Software Engineering
https://cmu-313.github.io

Andrew Begel and Rohan Padhye

https://cmu-313.github.io/


Learning Goals
● Describe random test-input generation strategies such as fuzz 

testing
● Characterize challenges of performance testing and suggest 

strategies
● Reason about failures in microservice applications how chaos 

engineering can be applied to test resiliency of cloud-based 
applications

● Describe A/B testing for usability

2



Automated Analysis for Functional and Non-Functional Properties

● Correctness – Static Analysis and Testing
● Robustness – Fuzzing
● Performance – Profiling
● Scalability – Stress testing
● Resilience – Soak testing
● Reliability – Chaos Engineering
● Usability – A/B testing



Puzzle: Find x such p1(x) returns True
def p1(x):
  if x * x – 10 == 15:
    return True
  return False

4



Puzzle: Find x such p2(x) returns True
def p2(x): 
  if x > 0 and x < 1000:
    if ((x - 32) * 5/9 == 100):
      return True
  return False

5



Puzzle: Find x such p3(x) returns True
def p3(x):
  if x > 3 and x < 100:
    z = x - 2
    c = 0
    while z >= 2:
      if ((z ** (x - 1)) % x) == 1:
        c = c + 1
      z = z - 1
    if c == x - 3:
      return True
  return False

6



Original: https://xkcd.com/1210 CC-BY-NC 2.5

https://xkcd.com/1210


Fuzz Testing
Security and Robustness

8



9

Communications of the ACM (1990)

“

”



Fuzz Testing

1
0

Input Program
Execute

w0o19[a%#
A 1990 study found crashes in: 
adb, as, bc, cb, col, diction, emacs, eqn, ftp, 
indent, lex, look, m4, make, nroff, plot, 
prolog, ptx, refer!, spell, style, tsort, uniq, 
vgrind, vi

/dev/random



Common Fuzzer-Found Bugs in C/C++
Causes: incorrect arg validation, incorrect type casting, executing 
untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-
free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

How to identify these bugs in languages like C/C++?



ClusterFuzz @ Chromium



Strengths and Limitations
● Exercise: Write down one strength and one weakness of fuzzing 

as a means of finding bugs. 

Bonus: Write down one assumption about the program that 
fuzzing depends on.

1
3



Strengths and Limitations

• Strengths:
• Cheap to generate inputs
• Easy to debug when a failure is identified
• Finds bugs that are hard to imagine with manual testing

• Limitations:
• Randomly generated inputs don’t make sense most of the time.

• E.g. Imagine testing a browser and providing some ”input” HTML randomly: 
dgsad5135o gsd;gj lsdkg3125j@!T%#( W+123sd asf j

• Unlikely to exercise interesting behavior in the web browser
• Can take a long time to find bugs. Not sure when to stop.

1
4



Performance Testing and 
Debugging

1
5



Performance Testing
● Goal: Identify performance bugs. What are these?

○ Unexpected bad performance on some subset of inputs
○ Performance degradation over time
○ Difference in performance across versions or platforms

● Not as easy as functional testing. What’s the oracle?
○ Fast = good, slow = bad // but what’s the threshold?
○ How to get reliable measurements?
○ How to debug where the issue lies?

1
6



Performance regression testing helps identify trends

● Measure execution time of critical components
● Log execution times and compare over time

1
7

Source: https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/speed/addressing_performance_regressions.md



Profiling helps debug performance issues
● Profiling is a form of 

dynamic analysis – measures 
and logs run-times for every 
function invocation

● Helps identify bottlenecks in 
execution time and memory

● Flame graphs are a popular 
visualization of resource 
consumption by call stack.

1
8



Profilers often included in IDEs



Domain-Specific Perf Testing 
(e.g. JMeter for Java web apps)

http://jmeter.apache.org

http://jmeter.apache.org/


Stress testing 
● Scalability/Robustness testing technique: test beyond the limits 

of normal operation.

● Can apply at any level of system granularity.

● Key idea: throw large amounts of input / requests and see how 
the program behaves

● Often a way to test the error-handling capabilities of the 
application

2
1



Real Issues: Disney+ Launch
● Lots of issues 

reported on 
launch day.

● Disney had 
planned for a 
spike in traffic. 
○ Tested massive 

concurrent video 
streaming 
capability.

● BUT: the stress 
was in paths other 
than streaming
○ User account 

creation
○ Logins and auth
○ Browsing old titles



Soak testing
● A system may behave exactly as expected under artificially 

limited execution conditions, but fail in production after 
extended use.
○ E.g., Memory leaks may take longer to lead to failure

● Soak testing a system involves applying a significant load over a 
significant period of time and observing system resilience.

● Time-consuming to run but useful to apply at big release 
milestones or when making infrastructure changes.

2
3



Reliability testing
● What happens when some components of a large complex 

system fail? Can the system recover and keep working?

● How can you test the reliability of something as complex as 
Netflix or Google maps or Instagram?

● One idea: simulate a large-scale deployment and induce random 
failures in various components

● Another idea…



Chaos Engineering: Testing in Production
● Purposefully take down components in a live deployment.

● Observe system response. Do failovers work correctly?

● Tests the failure-handling and fallback capabilities of large 
systems.

● Useful in preparing for natural disasters or cyberattacks.



Example: Google
Terminate network in Sao Paulo for testing:
● Hidden dependency takes down links in Mexico which would have 

remained undiscovered without testing

Turn off data center to find that machines won’t come back:
● Ran out of DHCP leases (for IP address allocation) when a large 

number of machines come back online unexpectedly. 

2
6



Example: Netflix
Significant deployment on AWS cloud. 
Hundreds of updates to microservices and 
infrastructure through the day.

Chaos Monkey randomly takes down AWS 
instances or network connections or randomly 
changes config files.

How to tell ”are we still good?” 
Key metric: Stream Starts per Second (SPS)
Measures availability

2
7



Testing GUIs and Usability

2
8



Automating GUI/Web Testing

● This is hard
● Capture and Replay Strategy 

○ mouse actions
○ system events

● Test Scripts: (click on button labeled "Start" expect value X in  field Y)
● Lots of tools and frameworks 

○ e.g. Selenium for browsers
● Can avoid load on GUI testing by separating model from GUI
● Beyond functional correctness?

2
9



Usability: A/B testing
● Controlled randomized experiment with two variants, A and B, 

which are the control and treatment.  

● One group of users given A (current system); another random 
group presented with B; outcomes compared.

● Often used in web or GUI-based applications, especially to test 
advertising or GUI element placement or design decisions.

3
0



Example
● A company sends an advertising email to its customer database, 

varying the photograph used in the ad... 

3
1



Example: group A (99% of users)

3
2

Act now! 
Sale ends 
soon!



Example: group B (1%)

3
3

Act now! 
Sale ends 
soon!



A/B Testing
● Requires good metrics and statistical tools to identify significant 

differences.
● E.g. clicks, purchases, video plays
● Must control for confounding factors

3
4



Summary
● Automatic testing for non-functional properties requires coming 

up with creative “test oracles”.

● Dynamic analysis is often the only viable approach for assessing 
many of these qualities (e.g., usability or scalability). Statically 
figuring this out is almost impossible.

● Corollary: Tools are great, but you need to have good test inputs 
/ scenarios to make the most of them.


