QA: Advanced Automated
Testing and Dynamic
Analysis

17-313 Fall 2023
Foundations of Software Engineering

https://cmu-313.github.io
Andrew Begel and Rohan Padhye

Softwar
3D Systems Dep tttttt

https://cmu-313.github.io/

Learning Goals

Software and Societal Carnegle
Systems Department z .

Describe random test-input generation strategies such as fuzz
testing

Characterize challenges of performance testing and suggest
strategies
Reason about failures in microservice applications how chaos

engineering can be applied to test resiliency of cloud-based
applications

Describe A/B testing for usability

Automated Analysis for Functional and Non-Functional Properties

Correctness - Static Analysis and Testing
Robustness - Fuzzing

Performance - Profiling

Scalability - Stress testing

Resilience - Soak testing

Reliability - Chaos Engineering

Usability - A/B testing

Software and Societal Carnegle
Systems Department z .

Puzzle: Find x such p1(x) returns True

def pl(x):
if x * x - 10 == 15:
return True
return False

SEiETE e ot Carnegie
S0 ssiemsocparime lon_

Puzzle: Find x such p2(x) returns True

def p2(x):
if x > 0 and x < 1000:
if ((x - 32) * 5/9 == 100):
return True
return False

SEiETE e ot Carnegie
S0 ssiemsocparime lon_

Puzzle: Find x such p3(x) returns True

def p3(x):
if x > 3 and x < 100:

2//=/ %/ A2

cC =20

while z >= 2:
if ((z ** (x - 1)) % x) == 1:

c=c+1

2/ /=2y

36 I SIS

return True
return False

Carnegie

Software and Societal Viell
Systems Department ellon
Universi

MONKi MI

“T) YEAH,
M S0 ME TOO.
RaNpOM. (

Original: https://xkcd.com/1210 CC-BY-NC 2.5

Software and Societal g[all'lnegle
Systems Department ellon
Universi

https://xkcd.com/1210

Fuzz Testing

Security and Robustness

SEiETE e ot Carnegie
3D sjsiems oeparime lon_

S35

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
Reliability of

Utilities

COMMUNICATIONS OF THE ACM/ December 1990/Vol.33, No.12 33

Communications of the ACM (1990)

Software and Societal 9
Systems Department

14

On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash.

29

Carnegie
Mellon
Universi

Fuzz Testing

S3D

/dev/random

Software and Societal
Systems Department

w0019[a%#

Execute
Input

Program

%

A 1990 study found crashes in:

adb, as, bc, cb, col, diction, emacs, eqn, ftp,
indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, unigq,
vgrind, vi

Carnegie

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing
untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-
free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Software and Societal Carnegle
Systems Department z .

ClusterFuzz @ Chromium

Co‘ bUgS chromium ~ All issues v Q_ label:ClusterFuzz -status:Duplicate

List

D~ Pri v M~ Stars v ReleaseBlock ~ Component v Status v Owner v

1133812 1 - 2 - Blink>GetUserMedia>Webcam Untriaged -

1133763 1 - 1 - - Untriaged -

1133701 1 - 1 - Blink>JavaScript Untriaged -

1133254 1 - 2 - - Untriaged -

1133124 1 —— 1 e - Untriaged -

1133024 2 - 3 - Internals>Network Started dmcardle@ch

Ul>Accessibility, . . X
1132958 1 - 2 - Blink>Accessibility Assigned sin...@chromi

1132907 2 - 2 - Blink>JavaScript>GC Assigned dinfuehr@chr

33 Software and Societal Carnegle

Systems Department

Strengths and Limitations

« Exercise: Write down one strength and one weakness of fuzzing
as a means of finding bugs.

Bonus: Write down one assumption about the program that
fuzzing depends on.

Software and Societal Carnegle
Systems Department 2 .

Strengths and Limitations

« Strengths:
* Cheap to generate inputs
 Easy to debug when a failure is identified
 Finds bugs that are hard to imagine with manual testing

* Limitations:
« Randomly generated inputs don’t make sense most of the time.

« E.g. Imagine testing a browser and providing some "input” HTML randomly:
dgsad51350 gsd;gj Isdkg3125j@!T%#(W+123sd asf j

 Unlikely to exercise interesting behavior in the web browser
« Can take a long time to find bugs. Not sure when to stop.

Software and Societal g[all'lnegle
Systems Department ellon
Universi

Performance Testing and
Debugging

Performance Testing

« Goal: Identity performance bugs. What are these?
- Unexpected bad performance on some subset of inputs
- Performance degradation over time
- Difference in performance across versions or platforms

. Not as easy as functional testing. What's the oracle?
- Fast =good, slow = bad // but what's the threshold?
- How to get reliable measurements?
- How to debug where the issue lies?

Software and Societal Carnegle
Systems Department z .

Performance regression testing helps identity trends

« Measure execution time of critical components
. Log execution times and compare over time

Job 12e96643840000

Issue 808613 - Analyze benchmark results - 2.0 hours - 2/14/2018, 9:48:34 AM

Differences found after commits 490
Re-record loading.desktop story set by

ksakamoto@chromium.org

Job arguments

. 470
benchmark loading.desktop

chart cpuTimeToFirstMeaningfulPaint ’/‘D\‘
460
configuration chromium-rel-mac11-pro / ./,/‘

statistic avg

450

story Pantip

Re-record loading.desktop story set by ksakamoto@chromium.org
target telemetry_perf_tests

tir_label warm

trace Pantip Build Test Values
ANEEEEEEEEEEEEEEEEEE ESEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEE
builder Mac Builder task_id 3baeadbeaa7f1710 trace Pantip_2018-02-14_11-40-
) _ 07_93865.html
isolate_hash ggggﬁ?eﬁ%?fff Oeredbenzsses botid buldierbé trace Pantip_2018-02-14_11-40-
isolate_hash ;?G%iggggsgggs94003ageegf351 B 42_21734.html

Software and Societal Carnegle
Systems Department 2 .

ing helps debug performance issues

Profil

Flame Graph

O > c >
rr e L
S5 U wn O
n > km
ae @)
U - me
« EQ S E
O_Sn - O
Eneo B c
NN awm
O X5 U v
— ="7 =>
© c O = &
© - S5 2 N
...bar.m n_nun
w2 e TO
- mm @))
e O -5 n >
= © 8] O U
SRS A NN
SRS U
O T My« I o
o o

e Flame graphs are a popular
visualization of resource

Iwp_start

libc.so.1" _thrp_setup

libc.so.1"

consumption by call stack.

gie
on

Universi

Carne
Mell

T +
s E
QL o
(@]
g
I
T o
C o
T A
Vun
o &
< o
e %
o >
v 0

S3D

Profilers often included in IDEs

TELERK JUS K E BULD DEB £ ICENIUM
- ned
Process: [9696] Demo.RayTracer.exe

JustTrace Session # X Program.cs 8

Bs 6 R

TIMELINE CON ECTED CALL

Current views:

Snapshot for 09:27:21 - 09:27

Total Time (ms)
OVERVIEW

45078 100.00%
49.51%
4937%
9.37%
4847%
213%
38.98%
) Vector rd, RayTracir 3 0.16% 2016%

Shade Ir

GetReflecti

erRectangle.Bottom &% !parameters.AbortSignaled; parameters.RenderStep)

Software and Societal Carnegle
Systems Department z .

Domain-Specific Perf Testing
(e.g. JMeter for Java web apps)

S3D

Software and Societal
Systems Department

88 Apache JMeter Dashboard by UbikLoadPack ~

data_source jmeter_influx ¥ application JMeter_demo ¥ transaction JR_OK » Start/stop marker

Summary

Total Requests Failed Requests Received Bytes Sent Bytes

21 07 Requests

Total Throughput Total Errors

Num of Errors Threads

Transactions Response Times (95th pct)

Error Rate %

Active Threads

2018-04-10 16:03:40

Threads:

Carnegie

http://jmeter.apache.org/

Stress testing

« Scalability/Robustness testing technique: test beyond the limits
of normal operation.

. Can apply at any level of system granularity.

« Key idea: throw large amounts of input / requests and see how
the program behaves

« Often a way to test the error-handling capabilities of the
application

Software and Societal Carnegle
Systems Department z .

Real Issues: Disney+ Launch

Disney+ problems last 24 hours

e Lots of issues
reported on
launch day.

e Disney had
planned for a

spike in traffic.

Tested massive
concurrent video

streamlng
capability.

e BUT: the stress
was in paths other

than streaming

©) U Sser accou nt Unable to connect to Disney+
creation R .

O Logl n S. a n d a ut.h later if the issue persists.

o Browsing old titles oK

Carnegie

Software and Societal
Systems Department Me!lon :
Universi

Soak testing

« A system may behave exactly as expected under artificially
limited execution conditions, but fail in production after

extended use.
- E.g., Memory leaks may take longer to lead to failure

. Soak testing a system involves applying a significant load over a
significant period of time and observing system resilience.

« Time-consuming to run but useful to apply at big release
milestones or when making infrastructure changes.

Carnegie

Software and Societal
Systems Department

Reliability testing

« What happens when some components of a large complex
system fail? Can the system recover and keep working?

« How can you test the reliability of something as complex as
Netflix or Google maps or Instagram?

« One idea: simulate a large-scale deployment and induce random
failures in various components

o Another idea...

Carnegie

Software and Societal Viell
Systems Department ellon
Universi

Chaos Engineering: Testing in Production

« Purposefully take down components in a live deployment.
« Observe system response. Do failovers work correctly?

« Tests the failure-handling and fallback capabilities of large
systems.

« Useful in preparing for natural disasters or cyberattacks.

Software and Soc t | Carnegie
S sisieme oparime lon

Example: Google

Terminate network in Sao Paulo for testing:

« Hidden dependency takes down links in Mexico which would have
remained undiscovered without testing

Turn off data center to find that machines won't come back:
« Ran out of DHCP leases (for IP address allocation) when a large
number of machines come back online unexpectedly.

Software and Societal Carnegle
Systems Department z .

Example: Netflix

Significant deployment on AWS cloud.
Hundreds of updates to microservices and
infrastructure through the day.

Chaos Monkey randomly takes down AWS
instances or network connections or randomly
changes config files.

| Y | |

HOW tO te“ "a re We Sti” gOOd?" 1730 20:15 23:00 01:45 0430 0715 10:00 12:45 15:00
Key metric: Stream Starts per Second (SPS)

M '/ b '/ o FIGURE 2. A graph of SPS ([stream] starts per second) over a 24-hour period. This
e a S u re S aval a I Ity metric varies slowly and predictably throughout a day. The orange line shows the trend

for the prior week. The y-axis isn't labeled because the data is proprietary.

Software and Societal Carnegle
Systems Department z .

Testing GUIs and Usability

Automating GUI/Web Testing

e This is hard
o Capture and Replay Strategy

o Mmouse actions
o System events

o Test Scripts: (click on button labeled "Start" expect value X in field Y)
o Lots of tools and frameworks
o e.g.Selenium for browsers
o Can avoid load on GUI testing by separating model from GUI
o Beyond functional correctness?

Software and Societal Carnegle
Systems Department z .

Usability: A/B testing

« Controlled randomized experiment with two variants, A and B,
which are the control and treatment.

« One group of users given A (current system); another random
group presented with B; outcomes compared.

« Often used in web or GUI-based applications, especially to test
advertising or GUI element placement or design decisions.

Carnegie

Software and Societal
Systems Department

Example

« A company sends an advertising email to its customer database,
varying the photograph used in the ad...

Software and Societal Carnegle
Systems Department 2 .

Example: group A (99% of users)

Act now!
Sale ends
soon!

Example: group B (1%)

Act now!
Sale ends
soon!

A/B Testing

« Requires good metrics and statistical tools to identify significant
differences.

« E.g. clicks, purchases, video plays

« Must control for confounding factors

Software and Societal Carnegle
Systems Department 2 .

Summary

« Automatic testing for non-functional properties requires coming
up with creative “test oracles”.

« Dynamic analysis is often the only viable approach for assessing
many of these qualities (e.g., usability or scalability). Statically
figuring this out is almost impossible.

« Corollary: Tools are great, but you need to have good test inputs
/ scenarios to make the most of them.

Carnegie

Software and Societal
Systems Department

