
Open-Source Software
17-313 Fall 2023

Foundations of Software Engineering
https://cmu-313.github.io

Andrew Begel and Rohan Padhye

https://cmu-313.github.io/

Learning Goals

• Distinguish between open-source software, free software, and
commercial software.
• Identify the common types of software licenses and their

implications.
• Distinguish between copyright and intellectual property.
• Express an educated opinion on the philosophical/political

debate between open source and proprietary principles.
• Describe how open-source ecosystems work and evolve, in terms

of maintainers, community contribution, and commercial backing
• Identify various concerns of commercial entities in leveraging

open-source, as well as strategies to mitigate these.

https://xkcd.com/2347/

What is Open-Source
Software?

Open-source Proprietary

What is Open-Source Software (OSS)?

• Source code availability
• Right to modify and creative derivative works
• (Often) Right to redistribute derivate works

Contrast with proprietary software: a black box

• Intention is to be used, not examined, inspected, or
modified.
• No source code – only download a binary (e.g., an app) or

use via the internet (e.g., a web service).
• Often contains an End User License Agreement (EULA)

governing rights and liabilities.
• EULAs may specifically prohibit attempts to understand

application internals.

Example: Bank
app on my phone

Free Software vs. Open Source

• Free software origins (70-80s ~Stallman)
● Cultish Political goal
● Software part of free speech

● free exchange, free modification
● proprietary software is unethical
● security, trust

● GNU project, Linux, GPL license
• Open source (1998 ~O'Reilly)

● Rebranding without political legacy
● Emphasis on internet and large dev/user involvement
● Openness toward proprietary software/coexist
● (Think: Netscape becoming Mozilla)

Perception (from some):
• Anarchy
• Demagoguery
• Ideology
• Altruism

Why Go Open Source (vs. Proprietary) ?
Advantages

• <today’s activity; do in
groups>

Disadvantages

• <make sure to note down
names of people sitting next
to you>

Open-Source Ecosystems
How OSS is developed

The Cathedral and the Bazaar

The Bazaar won

Cathedral
• Developed centrally by a

core group of members
• Available for all once

complete (or at releases)
• Examples: GNU Emacs, GCC

(back in the 1990s)
• “Sort-of” examples today:

Chrome, IntelliJ

Bazaar
• Developed openly and

organically
• Wide participation (in

theory, anyone can
contribute)
• Examples: Linux

OSS has many stakeholders /
contributors
• Core members

• Often (but not always) includes the original creators
• Direct push access to main repository
• May be further split into admin roles and developers

• External contributors
• File bug reports and report other issues
• Contribute code and documentation via pull requests

• Other supporters
• Beta testers (users)
• Sponsors (financial or platform)
• Steering committees or public commenters (for standards and RFCs)

• Spin-offs
• Maintainers of forks of the original repository

Contributing processes

• Mature OSS projects often have strict contribution guidelines
• Look for CONTRIBUTING.md or similar

• Common requirements:
• Coding style (recall: linters) and passing static checks
• Inclusion of test cases with new code
• Minimum number of code reviews from core devs
• Standards for documentation
• Contributing licensing agreements (more on that later)

Governence
• Some OSS projects are managed by for-profit firms

• Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical),
TensorFlow (Google), PyTorch (Meta), Java (Oracle)

• Contributors may be a mix of employees and community volunteers
• Corporations often fund platforms (websites, test servers, deployments,

repository hosting, etc.)
• Corporations usually control long-term vision and feature roadmap

• Many OSS projects are managed by non-profit foundations or ad-
hoc communities
• Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox

(Mozilla), Python (PSF), NumPy (community)
• Foundations fund project infrastructure via charitable donations
• Long-term vision often developed via a collaborative process (e.g., Apache)

or by benevolent dictators (e.g., Python, Linux)
• Corporations still heavily rely on community-owned OSS projects

• Many OSS non-profits are funded by Big Tech (e.g., Mozilla by Google)

Example: Apache

https://www.apache.org/theapacheway/

Corporate outlook towards open-
source has evolved over the years

“…most of you steal your software…”

Risks in not open-sourcing?

Use of open source software within companies
• Is the license compatible with our intended use?

• More on this later
• How will we handle versioning and updates?

• Does every internal project declare its own versioned dependency or do
we all agree on using one fixed (e.g., latest) version?

• Sometimes resolved by assigning internal “owners” of a third-party
dependency, who are responsible for testing updates and declaring
allowable versions.

• How to handle customization of the OSS software?
• Internal forks are useful but hard to sync with upstream changes.
• One option: Assign an internal owner who keeps internal fork up-to-date

with upstream.
• Another option: Contribute all customizations back to upstream to

maintain clean dependencies.
• Security risks? Supply chain attacks on the rise.

https://xkcd.com/2347/

Software Licenses
Note: I am not a lawyer (this is not legal advice)

https://www.statista.com/statistics/1245643/worldwide-leading-open-source-licenses/

Which license to choose?

GNU General Public License: The Copyleft License

• Nobody should be restricted by the software they use. There
are four freedoms that every user should have:
● the freedom to use the software for any purpose,
● the freedom to change the software to suit your needs,
● the freedom to share the software with your friends and

neighbors, and
● the freedom to share the changes you make.

• Code must be made available
• Any modifications must be relicensed under the same

license (copyleft)

Risks of “copyleft” licenses

• Example: GNU GPL
• Require licensing derivative works also with same license
• This is intentional!

• Depending on a GPL project from within a proprietary or
differently-licensed codebase is disaster
• Viral effect of polluting everything else with GPL requirement

• Most companies will avoid GPL code with a ten-foot pole
• Expect vetting process before engineers are allowed to use third-

party libraries from GitHub, etc.

Lesser GNU Public License (LGPL)

• Software must be a library
• Similar to GPL but does not consider dynamic binding as

“derivative work”
• So, proprietary code can depend on LGPL libraries as long as

they are not being modified

• See also: GPL with classpath exception (e.g., Oracle JDK)

MIT License

• Simple, commercial-friendly license
• Must retain copyright credit
• Software is provided as is
• Authors are not liable for software
• No other restrictions

Apache License

• Similar to MIT license
• Not copyleft
• Not required to distribute source code
• Does not grant permission to use project’s trademark
• Does not require modifications to use the same license

BSD License

• No liability and provided as is.
• Copyright statement must be included in source and binary
• The copyright holder does not endorse any extensions

without explicit written consent

Creative Commons (CC)

• More common for licensing data-sets instead of code
• Examples: images, websites, documentation, slides, plots, videos

• CC-BY (attribution only; derivatives allowed)
• CC-BY-SA (attribution and share-alike for derivates)
• CC-BY-ND (attribution and no derivatives)

Dual License Business Model
• Released as GPL

which requires a
company using the
open source
product to open
source it’s
application

• Or companies can
pay $2,000 to
$10,000 annually to
receive a copy of
MySQL with a more
business friendly
license

Risk: Incompatible Licenses

• Sun open-sourced OpenOffice, but when Sun was acquired
by Oracle, Oracle temporarily stopped the project.
• Many of the community contributors banded together and

created LibreOffice
• Oracle eventually released OpenOffice to Apache
• LibreOffice changed the project license so LibreOffice can

copy changes from OpenOffice but OpenOffice cannot do
the same due to license conflicts

Copyright vs. Intellectual Property (IP)

• IP and Patents cover an idea for solving a problem
• Examples: Machine designs, pharma processes to manufacture

certain drugs, (controversially) algorithms
• Have expiry dates. IP can be licensed or sold/transferred for $$$.

• Copyrights cover particular expressions of some work
• Examples: Books, music, art, source code
• Automatic copyright assignment to all new work unless a license

authorizes alternative uses.

• Exceptions for trivial works and ideas.

Contributor Licensing Agreements
(CLA)
• Often a requirement to sign these before you can contribute

to OSS projects
• Scoped only to that project

• Assigns the maintainers specific rights over code that you
contribute
• Without this, you own the copyright and IP for even small bug fixes

and that can cause them legal headaches in the future

Summary

• Open-source software harnesses the collective power of
stakeholders not directly associated with main developers
• Open-source ecosystems thrive in many application domains

where reuse is common (e.g., platforms, frameworks,
libraries)
• Corporations rely on open-source even if they develop

proprietary software or services.
• Open-source licenses must be chosen carefully to align with

intended use case.
• You will all contribute to OSS in this class!

