
Final Thoughts on the
semester

17-313 Fall 2023
Foundations of Software Engineering

https://cmu-313.github.io
Andrew Begel and Rohan Padhye and Michael Hilton

https://cmu-313.github.io/

Administrivia

• Final Exam time and Location: Tuesday, December 12

05:30pm-08:30pm In Person PH 100

• Snack Survey to be released tomorrow

2

Today- JIT Topic Selection:

• I have a set of topics I could present today, but I would like to
ask you what you would like to hear about:
• Grad School
• ML Fairness Types
• Dependency Management + SemVer
• Software Patents
• Decision Calculus

Grad School

Not All Grad School Programs are created equal

• PhD - Researched Focused

• Masters programs - A wide variety of programs with different
goals

● 5th year masters
● Research Masters
● Full/Part time Masters
● Immigration Concerns
● Breadth vs Depth

The PhD in CS:
Getting There and Being Successful

Dr. Janet Davis
Associate Professor

Whitman College

Dr. Michael Hilton
Associate Teaching Professor
Carnegie Mellon University

Ian Ludden
PhD Student

University of Illinois Urbana-Champaign

More Great Reasons to Pursue a Ph.D.

• Discover new things
• Identify new problems
• Develop creative solutions
• Push the boundary of knowledge
• Develop a habit of lifelong learning

Satisfy Your
Intellectual Curiosity

Pursuing a Ph.D. provides you
with a unique opportunity to

teach and mentor

Gain Opportunities to Teach
and Mentor

Many students don’t
realize that most C.S.
Ph.D. programs pay a

comfortable stipend. But
note, there are

opportunity costs.

Get Paid to Learn!

• Variable; average 6-7 years from Bachelor’s
• Depending on school, starting with a Master’s degree may shorten timeline

Timeline

• Dissertation (aka Doctoral Thesis)
• Oral/Written Exam along the way (e.g., qualifying exam)

Research

• Academia (e.g., a professor)
• Industrial, NPO, or government researcher or engineer
• Entrepreneur (e.g., a start-up)
• Higher-level development/leadership positions

Career Paths

• Typically “next level” CS foundations and (more) advanced electives
Coursework

• Generally tuition is waived and you typically receive a stipend and health
insurance from a teaching or research assistantship or fellowship

Tuition & Stipend (Get paid to learn!)

The CS Doctorate (Ph.D.) in a Nutshell

Typical Timeline for a Ph.D. Program

Year 1 Year 2 Year 3 Year 4 Years 5-N

Foundational
coursework to prepare

for research.
Join a lab with advisor &

initial project.

Complete a majority of
your coursework.

Take qualifying exam.
Identify research area.

Potentially earn Master’s
degree “along the way”.

Obtain preliminary results
and publish papers.

Formulate Ph.D. research
plan. Identify Ph.D.

committee. Begin writing
proposal.

Complete and defend
Ph.D. proposal.

Continue with research
and publishing your
results. Identify your
future career path.

Continue to publish.
Write & defend

dissertation. Prepare
and interview for

next job.

How a Ph.D. differs from an M.S. Degree

3-4 courses/term
for 1.5– 2 years.

Geared towards industrial
careers.

Typically not funded by the
school, but could be funded
by a company you work for.

Professional
Master’s Program

3-4 courses/term in first year.
1-2 courses/term with a research and MS

thesis or project in second year.
Not always funded, but there is the potential

to serve as a teaching assistant.

Academic Master’s Program

Similar to Academic
Master’s in the first 2

years. In years 3+,
primarily research.
Typically includes

additional duties such as
teaching assistant or
research assistant.

Doctoral (Ph.D) Program

https://www.youtube.com/watch?v=Qn7eUeNw6vI

Masters Programs

MS Diversity - This is just SCS MS Programs in SCS

Some Programs of Interest

• MSE - Masters of Software Engineering
• MSE - AMP
• SCS 5th Year Master’s Program
• 5th-Year Master’s in ML
• MBA/Part Time

Reasons to Consider a Master’s Degree

• Entry into the US Labor Force
• Extension of Student Visa
• Breadth
• Depth
• Credentials
• Curiosity of Learning
• ???

Master’s of Software Engineering

Masters Of Software Engineering

IS-MSE Accelerated Master's Program (AMP)

IS-MSE Accelerated Master's Program (AMP)

• 5th year master's program for
undergraduate Information Systems
majors in the Dietrich College of
Humanities and Social Sciences at
Carnegie Mellon.
• https://mse.isri.cmu.edu/applicants/mse-

amp.html
• Application Deadline: December 12, 2022

https://mse.isri.cmu.edu/applicants/mse-amp.html
https://mse.isri.cmu.edu/applicants/mse-amp.html

CSD Fifth-year Master’s

CS 5th year’s Master

• Fifth Year Master's program usually lasts 12 months,
including one normal academic year and one summer
• Students will start working on a research project during the

summer after their senior year, and continue that project
while taking classes during the academic year.
• Students can only start the Fifth Year Master's program after

they have received their B.S. in computer science or AI from
CMU.
• “Students typically apply in their senior year”
• https://csd.cmu.edu/academics/masters/requirements

M.S. in Computer Science

M.S. in Computer Science

• Pass* 96 units in qualifying master’s courses from the curriculum list in the MSCS Handbook. This is typically
eight courses.

• Pass 12 free-elective units.

• Pass one course from the available Systems courses. (May be used a qualifying course.)

• Pass one course from the available Theoretical Foundations courses. (May be used a qualifying course.)

• Pass one course from the available Theoretical Foundations courses. (May be used a qualifying course.)

• https://csd.cmu.edu/academics/masters/requirements

5th Year Master’s Machine Learning

5th-Year Master's in Machine Learning

• The 5th-Year Master's in Machine Learning allows CMU
students to complete a MS in Machine Learning in one
additional year by taking some of the required courses as an
undergraduate.
• Interested students apply earlier in Senior year than the

standard application deadline and receive the response
earlier as well.
• Must take precisely 3 of the MS courses during their

undergraduate years, passed with a B or better. (These
courses may also count towards the Bachelor's degree.)
• https://www.ml.cmu.edu/academics/5th-year-ms.html

https://www.ml.cmu.edu/academics/5th-year-ms.html

Questions?

ML Fairness

3
0

3
1

Fairness

ML Fairness

• Getting answers is the easy part… Asking the right questions
is the hard part.

https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb

Perception: Fair
Unfair

Life is often not this simple…

Fairness

• Is a deeply technical topic, but we will discuss it at a higher level of
abstraction.
• The formulas are important, but knowing which formula to apply is

MUCH more important
• This is a special case of how to to test when the desired outcome is

hard to measure.

What does ”fair” mean?

What is Fairness?

• Law
• fairness includes protecting individuals and groups from

discrimination or mistreatment with a focus on prohibiting behaviors,
biases and basing decisions on certain protected factors or social
group categories.

• Social Science
• “often considers fairness in light of social relationships, power

dynamics, institutions and markets.”3 Members of certain groups (or
identities) that tend to experience advantages.

What is Fairness? continued

• Quantitative Fields
• (i.e. math, computer science, statistics, economics): questions of

fairness are seen as mathematical problems. Fairness tends to match
to some sort of criteria, such as equal or equitable allocation,
representation, or error rates, for a particular task or problem.

• Philosophy:
• ideas of fairness “rest on a sense that what is fair is also what is

morally right.” Political philosophy connects fairness to notions of
justice and equity.

Fairness as QA

How can we define “fair”

• For the purposes of creating an oracle
• We must have a better definition than infamous 1964

Supreme Court obscenity test:
• I shall not today attempt further to define [obscene

material], and perhaps I could never succeed in
intelligibly doing so. But I know it when I see it, and the
motion picture involved in this case is not that.[

https://en.wikipedia.org/wiki/I_know_it_when_I_see_it

We don’t need to start from scratch…

What can we do?

What can we do?

• We can evaluate with different criteria (e.g., different
admissions score thresholds).
• We can observe the outcome of changing thresholds, and we

can set different thresholds for different groups. (e.g.,
different SAT scores for in-state or out-of-state admissions)
• We can observe the impact of these different thresholds

across a variety of metrics for each group.

First, some definitions:

4
5

https://dattaraj-public.s3.ap-south-1.amazonaws.com/AI-Fairness_26th+April_DR.pdf

Varieties of fairness (names vary)
• Group unaware

• Ignore group data (one group could get excluded)

• Group thresholds
• Different rules per group (rules differ by group)

• Demographic parity
• Same percentage in pool as outcomes (might result in random selection)

• Equal opportunity
• Equal chance out positive outcomes regardless of groups (focus on individual, rules

differ per group)

Group unaware

• We use some criteria that is independent of the categories
we are considering for fairness.
• Guarantees about outcomes: None. One group may be

completely excluded

Group thresholds

• We create different criteria per group
• Guarantees about outcomes: candidates inside a group are

evaluated by the same standard as others inside the same
group.
• By definition, groups are evaluated to a different standard

(e.g., different fitness standards by gender in US Military)

Demographic parity

• We create different criteria per group, with a goal of similar
outcomes in a certain dimension.
• Guarantees about outcomes: The same percentage of each

group will have a positive outcome. e.g., 25 % accepted from
group A, 25% accepted from group B.
• However, can result in different true positive rates, (e.g.,

more “worthy” candidates denied in group A than group B.

Equal opportunity

• We create different criteria per group, with a goal of similar
outcomes for similar individuals across groups.
• Guarantees about outcomes: The same number of true

positives per group. e.g., 80% true positives in group A, 80%
true positives in group B.
• However, can result in different positive rates across groups.

Explainability

https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Activity

Consider the different approaches to fairness. Can you come
up with different scenarios where each fairness approach
might or might not be appropriate?
Remember the fairness approaches are:
• Group unaware
• Group thresholds
• Demographic parity
• Equal opportunity

Resources

• Fairness Textbook:
• https://fairmlbook.org/testing.html

https://fairmlbook.org/testing.html

Dependency Management

Left-pad (March 22, 2016)

Left-pad (March 22, 2016)

Left-pad (Docs)

Left-pad (Source Code)

See also: isArray

Dependency Management
• It’s hard
• It’s mostly a mess (everywhere)
• But it’s critical to modern software development

What is a Dependency?
• Core of what most build systems do

• “Compile” and “Run Tests” is just a fraction of their job

• Examples: Maven, Gradle, NPM, Bazel, …
• Foo->Bar: To build Foo, you may need to have a

built version of Bar
• Dependency Scopes:

• Compile: Foo uses classes, functions, etc. defined by Bar
• Runtime: Foo uses an abstract API whose implementation is provided by Bar (e.g.

logging, database, network or other I/O)
• Test: Foo needs Bar only for tests (e.g. JUnit, mocks)

• Internal vs. External Dependencies
• Is Bar also built/maintained by your org or is it pulled from elsewhere using a package

manager?

Dependencies: Example

Where are the dependencies
hosted?
• Typically downloaded from dependency servers:

• Maven Central (https://repo.maven.apache.org/maven2/)
• Ubuntu Packages for Apt (https://packages.ubuntu.com/)
• Python Package Index (https://pypi.org/)]
• NPM Public Registry (https://registry.npmjs.org/)

• Packages need a unique identifier
• Typically a package name (sometimes owner name) and version

• Custom repositories allowed by most package
managers

• Often used for company-internal packages or cache mirroring
• Note problems with duplicates (same package name in different repositories; some priority

order is needed)

• Somebody needs to manage repositories
• Availability: Repository needs to be running
• Access Control: Packages should only be published by owners
• Integrity: Packages should be signed or otherwise verifiable
• Uniqueness and archival: Only one artifact per version
• Traceability: Packages can have metadata pointing to source or tests
• Security: ???

https://repo.maven.apache.org/maven2/
https://packages.ubuntu.com/
https://pypi.org/
https://registry.npmjs.org/

Transitive Dependencies
Packages can depend on other packages

Git SSH-client

libSSL

zLib

Q: Should Git be able to use exports of libSSL (e.g. certificate
management) or zLib (e.g. gzip compression)?

Diamond Dependencies
What are some problems when multiple

intermediate dependencies have the same
transitive dependency?

Git

SSH-Client

libSSL

libHTTP

Generally, can also be across levels

Git

SSH-
Client

zLib

libSSSL

libHTTP

Diamond Dependencies
What are some problems when multiple

intermediate dependencies have the same
transitive dependency?

Git 2.17.1

SSH-Client 1.7.6
libSSL 1.0.2

libHTTP 2.14 libSSL 1.1

Resolutions to the Diamond
Problem
1. Duplicate it!

• Doesn’t work with static linking (e.g. C/C++), but may be doable with Java (e.g.
using ClassLoader hacking or package renaming)

• Values of types defined by duplicated libraries cannot be exchanged across
2. Ban transitive dependencies; just use a global list with one version for each

• Challenge: Keeping things in sync with latest
• Challenge: Deciding which version of transitive deps to keep

3. Newest version (keep everything at latest)
• Requires ordering semantics
• Intermediate dependency may break with update to transitive

4. Oldest version (lowest denominator)
• Also requires ordering semantics
• Sacrifices new functionality

5. Oldest non-breaking version / Newest non-breaking version
• Requires faith in tests or semantic versioning contract

Semantic Versioning
• Widely used convention for versioning releases

• E.g. 1.2.1, 3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rc1

• Format: {MAJOR} . {MINOR} . {PATCH}
• Each component is ordered (numerically, then lexicographically; release-

aware)
• 1.2.1 < 1.10.1
• 3.1.0-alpha-1 < 3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0

• Contracts:
• MAJOR updated to indicate breaking changes

• Same MAJOR version => backward compatibility
• MINOR updated for additive changes

• Same MINOR version => API compatibility (important for linking)
• PATCH updates functionality without new API

• Ninja edit; usually for bug fixes

https://semver.org/

People rely on SemVer contracts

Dependency Constraints
• E.g. Declare dependency on ”Bar > 2.1”

• Bar 2.1.0, 2.1.1, 2.2.0, 2.9.0, etc. all match
• 2.0.x does NOT match
• 3.0.x does NOT match

•Diamond dependency problem can be
resolved using SAT solvers

• E.g. Foo 1.0.0 depends on “Bar >= 2.1” and “Baz 1.8.x”
• Bar 2.1.0 depends on “Qux [1.6, 1.7]”
• Bar 2.1.1 depends on “Qux 1.7.0”
• Baz 1.8.0 depends on “Qux 1.5.x”
• Baz 1.8.1 depends on “Qux 1.6.x”

• Find an assignment such that all dependencies are satisfied
• Solution: Use Bar 2.1.0, Baz 1.8.1, and Qux 1.6.{latest}

Semantic Versioning Contracts

• Largely trusting developers to maintain them
• Constrained/range dependencies can cause

unexpected build failures
• Automatic validation of SemVer is hard

Cyclic Dependencies
• A very bad thing
• Avoid at all costs
• Sometimes unavoidable or intentional

• E.g. GCC is written in C (needs a C compiler)
• E.g. Apache Maven uses the Maven build system
• E.g. JDK tested using JUnit, which requires the JDK to compile

A B

Cyclic Dependencies
• Bootstrapping: Break cycles over time
• Assume older version exists in binary (pre-built form)

• Step 1: Build A using an older version of B
• Step 2: Build B using new (just built) version of A

• Step 3: Rebuild A using new (just built) version of B
• Now, both A and B have been built with new versions of their dependencies
• Doesn’t work if both A and B need new features of each other at the same

time (otherwise Step 1 won’t work)
• Assumes incremental dependence on new features

• How was the old version built in the first place? (it’s turtles all the way down)
• Assumption: cycles did not exist in the past
• Successfully applied in compilers (e.g. GCC is written in C)

Dependency Security
• Will you let strangers execute arbitrary code on your laptop?

• Think about this every time you do “pip install” or “npm install” or “apt-get
updgrade” or “brew updgrade” or whatever (esp. with sudo)

• Scary, right? Who are you trusting? Why?

• Typo squatting (“pip install numpi”)

• Outright malice (remember the event-stream incident?)

• Genuine security vulnerabilities due to software bugs

Takeaways
• Dependency management is hard.

Software Patents

Software Patents:
The Good, The Bad, and The Ugly

Venice, 1474

England, 1566

Today: USA

https://www.popularmechanics.com/technology/design/g20051677/patents-changed-the-world

https://www.popularmechanics.com/technology/design/g20051677/patents-changed-the-world

What is a patent? New. Useful. Non-obvious.

“A patent is an exclusive right granted for an invention, which is a
product or a process that provides, in general, a new way of doing
something, or offers a new technical solution to a problem. To get a
patent, technical information about the invention must be
disclosed to the public in a patent application.”

https://www.wipo.int/patents/en

What rights do patents grant?

• Patents don’t give you the right to make, use, or sell an
invention.
• Patents do give you the right to exclude others from making,

using, and selling an invention for the term of a patent (20
years)

● stop or sue others
● licensing and royalties

What’s the difference? Patents vs. Copyright

• Copyrights cover the details of expression of a work
• Copyrights don't cover any ideas

Patents only cover ideas and the use of ideas
• Copyrights happen automatically.

Patents are issued by a patent office in response to an
application.

Why do patents exist?

• Encourage disclosure of inventions
• Reward invention and creativity
• Protect investment of capital into R&D
• Encourage the market to “design around”
• Protect small companies from large ones

Software Patents

Patent or not?

Patent or not?

1. Running bingo on a computer
2. Using a computer to help users plan meals while achieving diet goals
3. Using a computer to order a pizza with customized toppings
4. Prompting a user before establishing a new network connection
5. Automatically notifying users when an item is picked up or delivered
6. Using a computer network to ask people to complete tasks and then

wait for them to do them
7. Using SMS to perform tasks (e.g., checking bank balance)
8. Selecting ALL images in a CAPTCHA that match a given text

The software patent system is broken!

Alice vs. CLS Bank (2014)

https://www.orrick.com/Articles/The-Effect-of-the-Alice-Decision-on-Software-and-3D-Printing-Patents

Problem: Inventive step and non-obviousness

US5960411A

US5301348A

https://www.statista.com/statistics/256554/number-of-patent-application-filings-in-the-us

https://patents.google.com/patent/US5960411A/en
https://patents.google.com/patent/US5960411A/en

Problem: Long patent pendencies and terms

https://www.uspto.gov/sites/default/files/documents/USPTOFY21PAR.pdf

Problem: Incompatibility

• PNG was invented to avoid GIF patent issues
• Opus is a patent-free MP3 alternative
• AV1 vs H265

Problem: Independent discovery doesn’t matter!

“The idea that I can be presented with a
problem, set out to logically solve it with the
tools at hand, and wind up with a program
that could not be legally used because
someone else followed the same logical steps
some years ago and filed for a patent on it is

horrifying.”

John Carmack

Problem: Only large organizations benefit

• The patent system relies on people to challenge bad patents
● requires considerable time, money, and legal expertise
● the US legal system requires both parties to pay legal fees (c.f.,

losers pay costs in Europe) *
• US software patents cost between $15,000 to $45,000!

● that’s before you even apply for international patents!

https://www.patenttrademarkblog.com/how-much-patent-costs
https://www.eff.org/issues/patent-busting-project

https://www.patenttrademarkblog.com/how-much-patent-costs

Problem: Non-Practicing Entities (Patent Trolls)

Problem: Innovation is Stifled

“As a developer for a small startup, absurd software
patents are a constant worry. Stories abound of people
like us getting pressured out of existence over the use of
incredibly vague, basic interface elements and system
components.”

“Software patents are generally written in vague and
nontechnical legal language, which obfuscates the patent
in question . . . and also makes it easy to dramatically
extend the patent to elements not considered at all when
the patent was originally filed.”

This American Life: When Patents Attack!

• Innovatio sued libraries and coffee shops
for providing WiFi in a public space
• Boadin has sued various media outlets,

claiming that its patents are infringed
whenever a word or phrase on your
computer autocompletes
• NPHJ claims they hold a patent on “scanning

and emailing documents”. They tried to
sued non-profits for $1000 per employee in
damages.

https://www.thisamericanlife.org/496/when-patents-attack-part-two

https://www.thisamericanlife.org/496/when-patents-attack-part-two

https://www.eff.org/deeplinks/2022/05/patent-troll-uses-ridiculous-people-finder-patent-sue-small-dating-companies

• Zoosk has a website that mobile devices can connect to
• Zoosk’s server collects information from the mobile devices, including location and unique device identifiers
• Zoosk users can send and accept invitations to connect with and send messages to each other.
• Zoosk shares profile information of connected users, who are “members of a same social network” (i.e., they’re on Zoosk)
• Zoosk can connect users who are in the immediate vicinity of each other, or a particular distance away

https://www.eff.org/deeplinks/2022/05/patent-troll-uses-ridiculous-people-finder-patent-sue-small-dating-companies

Problem: Open Source is under attack, too!

What next?

• Alternative licensing models
● The Defensive Patent License (DPL)
● The Open Invention Network (OIN)
● License on Transfer (LOT)

• Bogus patent bounties
• Unified Patents
• Commonsense reform
• Abolish software patents?

https://www.unifiedpatents.com/

Decision Calculus

Life is all about tradeoffs

In this course, we have talked a lot about tradeoffs.

Some tradeoffs we have discussed:

Writing Tests vs writing more features

Choosing a familiar tech stack vs a “trendy one”

Other tradeoffs…?

Think about structured ways to make decisions

Do what is ethical, legal, moral, obvious
Sometimes, there are multiple (legitimate) options, that all seem
to have positives and negatives.

What to do?

People have studied this before...

Economics

Biology + Microbiology

Sociology

Engineering

Computer Science

Strategy Games

Ethics

Medicine

Politics

Architecture Tradeoff Analysis Method

1. Present the ATAM.
2. Present business drivers.
3. Present architecture.
4. Identify architectural

approaches.
5. Generate quality attribute

utility tree.
6. Analyze architectural

approaches.
7. Brainstorm and prioritize

scenarios.
8. Analyze architectural

approaches.

https://concisesoftware.com/architecture-tradeoff-analysis-method-atam/

https://concisesoftware.com/architecture-tradeoff-analysis-method-atam/

Pros and cons

https://theoatmeal.com/blog/pros_cons_list

https://theoatmeal.com/blog/pros_cons_list

Moral or Prudential Algebra

1. Make a list of Pros and Cons
2. Take a few days to think, forcing your brain to come up with all of the positive and
negative aspects of taking the measure you’re considering.
3. Assign weights to each item on your list depending on its importance.
4. When the weight of a item on your “pro” list is equal to the weight of an item on your
“con” list, strike both of them out.
5. What is left in the balance is the choice you need to make. Wait a few more days and, if
nothing new occurs to you, act on the decision you’ve made.

Even Swaps

Premise:

It is easy to make decisions when there is
only one objective.
But having only one objective, as any
decision maker knows, is a rare luxury.
Even swaps provides a practical way of
making trade-offs among any set of
objectives across a range of alternatives.

Overview - 3 step process

1. Create a Consequences Table

2. Eliminate “Dominated” Alternatives

3. Make Even Swaps

Running Example from research paper

Example: Alan Miller is a computer scientist who started a technical consulting
practice three years ago.

For the first year, he worked out of his home, but as his business grew he decided to
sign a two-year lease on some space in the Pierpoint office park.

Now that lease is about to expire. He needs to decide whether to renew it or move to a
new location.

Define the objectives

Alan defines five overriding objectives that he needs his office to fulfill:

1. a short commute from home
2. good access to his clients
3. good office services (clerical assistance, copiers and fax machines, and mail service)
4. sufficient space
5. low costs

He finds five viable alternatives: Parkway, Lombard, Baranov, Montana, and his current building, the
Pierpoint.

Create Consequences Table

https://hbr.org/1998/03/even-swaps-a-rational-method-for-making-trade-offs

Objectives Parkway Lombard Baranov Montana Pierpoint

Commute in Minutes 45 25 20 25 30

Customer Access (%) 50 80 70 85 75

Office Services A B C A C

Office Size (Square Feet) 800 700 500 950 700

Monthly Cost ($) 1850 1700 1500 1900 1750

https://hbr.org/1998/03/even-swaps-a-rational-method-for-making-trade-offs

Create Ranking Table

https://hbr.org/1998/03/even-swaps-a-rational-method-for-making-trade-offs

Objectives Parkway Lombard Baranov Montana Pierpoint

Commute in Minutes 45 (5th) 25 (2nd tie) 20 (1st) 25 (2nd tie) 30 (4th)

Customer Access (%) 50 (5th) 80 (2nd) 70 (4th) 85 (1st) 75 (3rd)

Office Services A (1st tie) B (3rd) C (4th tie) A (1st tie) C (4th tie)

Office Size (Square Feet) 800 (2nd) 700 (3rd tie) 500 (5th) 950 (1st) 700 (3rd tie)

Monthly Cost ($) 1850 (4th) 1700 (2nd) 1500 (1st) 1900 (5th) 1750 (3rd)

https://hbr.org/1998/03/even-swaps-a-rational-method-for-making-trade-offs

Eliminate “Dominated” Alternatives

https://hbr.org/1998/03/even-swaps-a-rational-method-for-making-trade-offs

Objectives Parkway Lombard Baranov Montana Pierpoint

Commute in Minutes 45 (5th) 25 (2nd tie) 20 (1st) 25 (2nd tie) 30 (4th)

Customer Access (%) 50 (5th) 80 (2nd) 70 (4th) 85 (1st) 75 (3rd)

Office Services A (1st tie) B (3rd) C (4th tie) A (1st tie) C (4th tie)

Office Size (Square Feet) 800 (2nd) 700 (3rd tie) 500 (5th) 950 (1st) 700 (3rd tie)

Monthly Cost ($) 1850 1700 1500 1900 1750

https://hbr.org/1998/03/even-swaps-a-rational-method-for-making-trade-offs

Make Even Swaps

1. Determine the change necessary to cancel out an objective.

2. Assess what change in another objective would compensate for the needed change.

3. Make the even swap.

4. Cancel out the now-irrelevant objective.

5. Select the dominant alternative.

First Even Swaps

• For Baranov, swap 5 commute minutes, for 8% customer access.

Objectives Lombard Baranov Montana

Commute in Minutes 25 (1st tie)
20 25 (1st

tie)
25 (1st tie)

Customer Access (%) 80 70 78 85

Office Services B C A

Office Size (Square
Feet) 700 500 950

Monthly Cost ($) 1700 1500 1900

Second Even Swaps

• For Baranov, swap C->B, add $200, for Montana, swap A->B, reduce $100

Objectives Lombard Baranov Montana

Commute in Minutes 25 25 25

Customer Access (%) 80 78 85

Office Services B C B A B

Office Size (Square
Feet) 700 500 950

Monthly Cost ($) 1700 1500 1700 1900 1800

Second Even Swaps

• For Lombard, swap 250 sq ft for $250

Objectives Lombard Montana

Commute in Minutes 25 25

Customer Access (%) 80 85

Office Services B B

Office Size (Square Feet) 700 950 950

Monthly Cost ($) 1700 1950 1800

Advice for swaps

• Make the easier swaps first
• Concentrate on the amount of the swap, not on the apparent importance of

the overall objective.
• Remember that the value of an incremental change depends on what you

start with.
• Make consistent swaps.
• Seek out solid information.

