
 1

Teamwork in a first Scrum project1

1. Background

The team organized the project according to generally recommended Scrum practices. Plans were

made at the beginning of each sprint, after the team had reviewed what was produced in the

previous sprint. Features were recorded in the sprint backlog. The team held three project

retrospectives to identify and discuss problems and opportunities that arose during the development

process. Daily meetings were organized throughout the project, though these were less frequent in

the last two sprints. These meetings were usually about updating the others on progress,

development issues, and the project in general. The daily meetings we observed lasted from 10 to

35 minutes, but were usually shorter than 15 minutes. The product owner, who was situated in

another city, often participated in these meetings by telephone. He participated because both he and

the Scrum master thought that it was important to share information constantly and participate in

the decision-making process.

The project began in May 2006, with the first installation planned for October and the final

installation for November 2006. However, the first installation was not approved until December

2006 and from January 2007, two developers continued working with change requests until the final

installation was approved in October 2007. Five of the sprints lasted one month, the sprint during

summer for two. The figure below shows major events in the project together with a project-

participant satisfaction graph. This figure was created by the team in the final project retrospective

and was based on a timeline exercise. To create the project-participant satisfaction graph, each team

member first drew his own graph for the emotional ups and downs during the project, after which

the graphs were merged.

1 Excerpt from: Moe, Nils Brede, Torgeir Dingsøyr, and Tore Dybå. "A teamwork model for understanding an agile team: A case

study of a Scrum project." Information and Software Technology 52.5 (2010): 480-491.

 2

Figure 1: Main events in the project and project satisfaction

In the initial planning phase, before coding began, several meetings were used to discuss the overall

architecture, and decide on the technology and development platform. As can be seen from the

figure, the team was frustrated in this period, because of what the team described as “endless

discussion without getting anywhere”. After Scrum was introduced and code writing began, the

team was more satisfied with the project. In the first retrospective, the team itself concluded that the

team members were taking responsibility, that they were dedicated to the project, and that the team

was protected against external issues. Meetings and work were perceived as well-coordinated.

During the first retrospective, a developer said:

Earlier we worked more alone, and when you got a project doomed to failure, you would get a lot of negative

response. That was unpleasant. Now we share both the risk and opportunities.

The team was satisfied with their performance in sprints 1-4. However, in sprint 5, problems with

integrating a deliverable from the subcontractor emerged, which resulted in the two last sprints

being chaotic and the project being delayed. During this period, we saw many empty pizza boxes in

the office space, which indicated that the developers were working late. Developers told us they

also worked at weekends. The team became less satisfied, as shown in the figure.

However, after the client had approved the first installation, the team became more satisfied.

In the last retrospective, the team described the project as a good one, except for the problems

May 2006 January 2007

Discussing
Technology

and
Architecture

L
K
J

Summer
vacation

Celebrate with
cake

New
developer

hired

One
developer
leaves the

project

Developers
move into

open office

Waiting for
sub-contractor

Two
developers
leave the
project

Customer starts
Testing &
approves
1. installation

User
documentation

finished1. installation

Deliverable
from sub-
contractor

June - August
Sprint 1

Oct - Nov
Sprint 4

Nov - Dec
Sprint 5

Dec - Jan
Sprint 6

May - June
Inital planning

Sep - Oct
Sprint 3

Backlog
improved

Lots of
meetings

Pr
oj

ec
t s

at
is

fa
ct

io
n

Pr
oj

ec
t e

ve
nt

s

Rewriting DB
module

Aug - Sep
Sprint 2

 3

related to the deliverable from the subcontractor. Then again, the team saw this as something

beyond their control.

Despite the teams’ overall satisfaction with the teamwork, throughout the project we

observed problems with completing the backlog and following the sprint plan, unproductive

meetings, developers often being silent in the planning meetings, and developers often reporting

working on issues other than those that it had been initially planned to work on. In addition, the

developers received little feedback when talking about what they were doing. In what follows, we

will use the data we collected to explain some of our observations.

2. Introducing Scrum: Sprints 1-2

The project leader participated in a Scrum master certification course. The first sprint was

initiated with a two-day Scrum course. The first day was spent on introducing Scrum to the whole

development department, the second on planning the first sprint.

The first sprint completed most of the backlog, and the team was satisfied with the progress.

However, in the first retrospective, the team reported problems with both defining a stable sprint

backlog and finishing it. We observed these problems as well. The team also ended up working on

tasks that were not discussed or identified during the sprint planning meeting.

Figure 2: From the review and retrospective meeting in sprint 2.

 4

In this company, each team member is usually assigned to work on a specific software

module from the beginning to the end. The advantages with this structure are that it is

organizationally simple, it allows many tasks to be completed in parallel, and task responsibilities

can be clearly defined and understood. The Scrum master subscribed to this view [interview]:

Let the person who knows most about the task perform it! We cannot afford several people doing the same

thing in this project. We need to continue working as we have done before.

The team mostly kept this structure after introducing Scrum. A developer said [interview]:

Because we have to deliver every month, there is never time to swap tasks.

Because of the division of work, the developers typically created their own plan for their own

module, often without discussing it with the team. A developer commented [interview]:

Some are more motivated by the perfect technical solution, than thinking of when things need to be done.

In this phase, one developer even implemented features for future projects, without informing the

others. This was discussed in a daily stand-up of the second sprint:

Developer: The customer databases will be used by several applications, so I have implemented support for

dealing with various technologies, including Oracle. It took a lot of time.

Scrum master: Did we not agree on postponing this?

Developer: We need this later and now it is done.

As a result of this incident, the Scrum master lost trust in this developer and started to supervise

him. Consequently, the developer was not part of the team leadership any more, even when

discussing modules where he was seen as the expert. We observed that he was sometimes absent

from the daily meetings.

The Scrum master also observed that the team was not reporting problems. In interviews, we

found that the developers thought that the Scrum master was overreacting to problems stated at the

daily meetings, which resulted in the team not reporting problems when the Scrum master was

present. After the Scrum master confronted the team with this issue, the situation improved.

However, for the rest of the project, the Scrum master still felt that problems were reported too late.

This was confirmed by our observations of daily stand-ups.

In the second retrospective, we found two more reasons for problems not being reported:

problems were discovered late and they were seen as personal. One developer said:

 5

People working alone results in the team not discovering problems, because you do not get feedback on your

work.

Because of the isomorphic team structure, the developers perceived new emerging tasks and new

problems as personal; as a result, they did not seek assistance when needed. They focused on their

own modules. In the second retrospective meeting, one developer said:

When we discover new problems, we feel we own them ourselves, and that we will manage to solve them

before the next meeting tomorrow. But this is not the case, it always takes longer.

When individuals are independent and have more control over their schedule and the

implementation of their tasks, there is less interaction between the group members. One developer

said [Retrospective sprint 2]:

When it comes to the daily scrum, I do not pay attention when Ann is talking. For me, what she talks about is a

bit far off the topic and I cannot stay focused. She talks about the things she is working on. I guess this

situation is not good for the project.

In this phase, the team spent more than 100 hours rewriting a module. The developer responsible for

the module said [interview]:

I was supposed to create a database that every project could use. After I had created it, I explained how it was

done during a stand-up, and then I went on vacation. Later, when they started using it, they did not understand

how it was supposed to be used, and they decided to rewrite the whole module. The team had probably not

understood what I was talking about when I explained the database in the daily stand-up. If I had not gone on

vacation they would not have needed to do the rewriting … another problem is the daily meeting. It’s only a

short debrief, there is never time to discuss what you are working on.

The developer did not verify that the team had understood how he had implemented the module and

no one gave feedback to the effect that they did not understand how the module was implemented

during the stand-up. The consequence was reduced progress and team efficiency.

In the second retrospective, the team concluded [retrospective report]:

The team must work more on the same tasks, and then no one will sit alone. Working alone results in

knowledge not being disseminated, and there is no backup. Also, problems are being discovered late and

developers not getting feedback on their work.

