
Metrics and
Measurement

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

• Homework 1B due tonight at 11:59 pm
• If you just joined the class, let us know via email or Slack, and we will

extend the 1A deadline till tonight

• If you aren’t on the Slack yet, send an email to us!

• We will reveal teams on Monday during recitation
• if you haven’t taken the Team Formation survey yet, see it on Canvas

Smoking Section

•Last full row

Learning Goals

• Explain the importance of measurement and metrics in
Software Engineering

• Provide examples of metrics for software qualities and process

• Apply goal-based frameworks for decision making using
metrics

• Identify the limitations and dangers of decisions and incentives
based on measurements

4

Measurement in everyday life

• Economics
• price, inflation rate, stock price, volume

• Medicine
• heart rate, blood pressure, body temperature, ECG

• Engineering
• force, torque, heat transfer coefficient, thermal efficiency

• Natural sciences
• AQI, carbon footprint, soil pH

“To measure is to know; if
you can not measure it, you

can not improve it”

William Thomson, Lord Kelvin

Software
Development…

before Software
Engineering

by DALL-E

Software Engineering

8

Principles and practices (technical and non-technical) for
confidently building high-quality software

Principles and practices (technical and non-technical) for
confidently building high-quality software

Software Engineering

9

What does this mean?
How do we know?

We need metrics
and measurement!

Outline
Measurements and Metrics

How to use Measurements and Metrics

Case Study: Autonomous Vehicle Software

Risks and Challenges

Metrics and Incentives

Outline
Measurements and Metrics

How to use Measurements and Metrics

Case Study: Autonomous Vehicle Software

Risks and Challenges

Metrics and Incentives

What is Measurement?

12

What is Measurement?

• “Measurement is the empirical, objective assignment of
numbers, according to a rule derived from a model or
theory, to attributes of objects or events with the intent
of describing them”
Kaner, Bond, Software Engineering Metrics: What Do They
Measure and How Do We Know?

13

What is Measurement?

• “A quantitatively expressed reduction of uncertainty
based on one or more observations.”
Hubbard, How to Measure Anything …

14

What is Measurement?

Metric

Attribute

MEASURES

DESCRIBES

Entity

• “A software quality metric is a function
whose inputs are software data and
whose output is a single numerical value
that can be interpreted as the degree to
which the software possesses a given
attribute that affects its quality.”

IEEE 1061

What is Measurement?

Object or process à

Quality of interest à

Method to obtain a number or symbol à Metric

Attribute

MEASURES

DESCRIBES

Entity

Entities represent an Object or Process

Examples
• Software Product

• Modules
• Software Development Process

• People

Metric

Attribute

MEASURES

DESCRIBES

Entity

Attributes represent Qualities of Interest

Examples for Software Quality Metric

Attribute

Entity

MEASURES

DESCRIBES

• Reliability

• Security
• Scalability

• Extensibility
• Portability

• Availability

• Safety

• Observability

• Accuracy
• Robustness

• Resilience
• Timeliness

• Responsiveness

• Intuitiveness

Attributes represent Qualities of Interest

Examples for Software Dev. Process Metric

Attribute

Entity

MEASURES

DESCRIBES

• Development efficiency

• Meeting efficiency
• Conformance to process

• Accuracy of predictions
• Fairness in decision making

• Regulatory compliance

• On-time release

• …

Attributes represent Qualities of Interest

Examples for People Metric

Attribute

Entity

MEASURES

DESCRIBES

Developers
• Productivity

• Agility

• Well-Being + Job
Satisfaction

• Communication and
Collaboration

• Creativity

• Morale

• Regulatory Compliance

End Users
• Product Satisfaction

• Ease of Use

• Feature Usage

• Regulatory
Compliance

⚠ What about Non-Trivial Qualities?

• Software
• code elegance
• code maintainability

• Process
• development efficiency
• fairness in decision making

• Team
• productivity
• collaboration
• creativity

“Measure what is
measurable, and make

measurable what is not so.”

Galileo Galilei

Everything is Measurable
• If we care about X, then, by definition, X must be detectable

• how could we care about things like quality, risk, security, or public image if
these things were totally undetectable, directly or indirectly?

• if we have reason to care about some unknown quantity, it is because we
think it corresponds to desirable or undesirable results in some way

• If X is detectable, then it must be detectable in some amount
• if you can observe a thing at all, you can observe more of it or less of it

• If we can observe it in some amount, then it must be measurable

Douglas Hubbard, How to Measure Anything, 2010

Example:
Code Complexity

24

thanks to ChatGPT for the terrible image

Number of Lines
• Easy to Measure!

25

wc –l file1 file2…

LOC projects

450 Expression Evaluator
2,000 Sudoku

100,000 Apache Maven
500,000 Git

3,000,000 MySQL
15,000,000 gcc

50,000.000 Windows 10
2,000,000,000 Google (MonoRepo)

• Ignore comments and empty lines
• Ignore lines < 2 characters
• Pretty print source code first
• Count statements (logical lines of code)
• See also: cloc

Normalizing Lines of Code

for (i = 0; i < 100; i += 1) prin0("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
 i = 0;
 i < 100;
 i += 1
) {
 printf("hello");
}

Normalization by Language

27

Language Statement factor (productivity) Line factor

C 1 1

C++ 2.5 1
Fortran 2 0.8

Java 2.5 1.5
Perl 6 6

Smalltalk 6 6.25
Python 6 6.5

Source: “Code Complete: A Practical Handbook of Software Construction“, S. McConnell, Microsoft Press (2004)
and http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html u.a.

http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html
http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

Halstead’s Metrics (1977)
• Based on number of operators (e.g., print, +, -) and

operands (name, “maurice”)
• 𝑛! and 𝑛!: # of distinct operators and operands

• 𝑁! and 𝑁": # of instances of operators and operands

• Derived metrics include vocabulary (N), length (n), volume (V),
difficulty (D), effort (E), time to write (T), number of bugs (B)

𝐷 =
𝑛!
2 +

𝑁"
𝑛"

𝑉 = 𝑁	× log" 𝑛 𝐸 = 𝐷	×	𝑉

𝑇 =
𝐸
18

𝐵 =
𝑉

3000𝑁 = 𝑁! + 𝑁" 𝑛 = 	𝑛! + 𝑛"

McCabe Cyclomatic Complexity (1976)
• Computed according to control flow graph
• tells you how many tests you need for full branch coverage

• Equal to number of decision points + 1
• if, while, do-while, ?:, catch, switch, case
• && and || in if condition

“For each module, either limit cyclomatic complexity to [X] or
provide a written explanation of why the limit was exceeded.”
NIST Structured Testing methodology

Object-Oriented Metrics (1994)
• Number of Methods per Class
• Depth of Inheritance Tree
• Number of Child Classes
• Coupling between Object Classes
• Calls to Methods in Unrelated Classes
• …

30

Takeaways: Code Complexity

• There are lots of complexity metrics that measure different
things, which may or may not be what we care about

• there is no single value that fully captures “code complexity”
• most of these metrics are confounded by code size!

• We need to be intentional about what we are measuring
• how hard is this code to read?
• how difficult is this code to maintain?
• does this function need to be refactored?

Outline
Measurements and Metrics

How to use Measurements and Metrics

Case Study: Autonomous Vehicle Software

Risks and Challenges

Metrics and Incentives

“OKRs have helped lead us to 10x
growth, many times over.”

Larry Page, CEO of Google

"The key result has to be measurable. But
at the end you can look, and without any
arguments: Did I do that or did I not do it?
Yes? No? Simple. No judgments in it.”

Andy Grove, Inventor of OKRs

“Every measurement action
must be motivated by a

particular goal or need that
is clearly defined and easily

understandable.”
Software Metrics: A Rigorous and Practical Approach

N.Fenton, J.Bieman

Goal-Based Frameworks

• Objectives and Key Results (OKRs)
• Goal-Question-Metric (GQM)
• Assurance Cases
• …

The GQM Framework

Goal: What do you want to achieve?

Questions: What do you need to answer
to know whether your goal is met?

Metrics: What measurements do you
need to answer each question?

GQM: Defining Goals

P: Purpose (improve, evaluate, monitor, …)
I: Issue (reliability, usability, effectiveness, …)
O: Object (final product, component, process, activity)
V: Viewpoint (any stakeholder)

Evaluate the effectiveness of the organization’s coding
standard from the team’s perspectiveGoal:

Questions: How comprehensible are
the coding standards?

What is the impact of coding
standards on the efficiency and
productivity of the team?

Survey results
measuring team
members'
understanding

Metrics: Number of
revisions required
to achieve
standard
compliance

Code size:
of lines of code,
of classes,
of functions

Measurement for Decision Making
• Fund project?
•More testing?
• Fast enough? Secure enough? Safe enough?
• Code quality sufficient?
•Which feature to focus on?
• Should we refactor the code? Rewrite?
•Developer bonus?
• Time and cost estimation? Predictions reliable?

39

Analysis and Interpretation

Challenge: How do we actually interpret the
measurements from our metrics?

Calibrate thresholds based on feedback

• Problem: ”I’ll know it when I see it”
• ”That function is way too complex!”

• Solution: Use existing code to obtain a set of thresholds
• pick exemplars (clear pass / fail / borderline)
• present to team, track agreement, and derive thresholds

• E.g., cyclomatic complexity shouldn’t be higher than 10

• periodically recalibrate over time (e.g., technology changes)

Track metrics over time to assess trends

42

Benchmark against existing standards

• Monitor similar products,
projects, modules, teams

• Refer to external
standards if possible
• e.g., ISO 26262

• Record typical values for
metrics of interest

• Investigate deviations

Outline
Measurements and Metrics

How to use Measurements and Metrics

Case Study: Autonomous Vehicle Software

Risks and Challenges

Metrics and Incentives

Safety Assurance Cases and AVs

https://aurora.tech/vssa

https://aurora.tech/vssa
https://aurora.tech/vssa
https://aurora.tech/vssa
https://aurora.tech/vssa

AV Software is ________________________

46

By what Metrics can we judge AV software
(e.g., safety)?

47

(1) Code Coverage

• Amount of code executed
during testing.
• Statement coverage, line

coverage, branch coverage,
etc.
• E.g., 75% branch coverage �

3/4 if-else outcomes have
been executed 48

(2) Model Accuracy

• Train machine-learning
models on labelled data
(sensor data + ground truth)
• Compute accuracy on a

separate labelled test set
• E.g., 90% accuracy implies

that object recognition is
right for 90% of the test
inputs.

49

Source: Peng et al. ESEC/FSE’20

(3) Failure Rate

• Frequency of crashes /
fatalities
• Per 1,000 rides, per million

miles, per month (in the
news)

50

(4) Mileage

51
Source: waymo.com/safety (September 2021)

Participation Activity

• Apply the Goal-Question-Metric framework to explore various
aspects of AV software

• Define one goal, two questions, and at least one metric per
question

• Write it down on a piece of paper with your Andrew ID(s) on it.

• You can work in groups of 2 to 3

• Share with the class!

Example
Goal: Ensure energy efficiency and sustainability from the point of view of
the organization and environmental analysts

Q1: What is the energy consumption
under different driving conditions?

Metrics: Battery life
number of charge cycles
peak battery temperature

Q2: How efficient is the battery
management system?

Metrics: Miles per kWh
{city, highway, mixed}
{winter, summer, fall}

Outline
Measurements and Metrics

How to use Measurements and Metrics

Case Study: Autonomous Vehicle Software

Risks and Challenges

Metrics and Incen?ves

55

The Streetlight Effect

• A known observational bias

• People tend to look for something
only where it’s easiest to do so

• If you drop your keys at night, you’ll
tend to look for it under streetlights

56

Bad Statistics:
What could possibly go wrong?

57

Making Inferences

• To infer causation:
• Provide a theory (from domain knowledge, independent of data)
• Show correlation
• Demonstrate ability to predict new cases (replicate/validate)

58

http://xkcd.com/552

Spurious Correlations

59

Confounding Variables

• If you look only at the coffee
consumption → cancer relationship,
you can get very misleading results
• Smoking is a confounder

60

61

“We found that there is a low to moderate correlation between
coverage and effectiveness when the number of test cases in the
suite is controlled for.”

Most prior studies didn’t account for the confounding influence of test suite size

• Extent to which a measurement yields similar results when applied
multiple times
• Goal is to reduce uncertainty, increase consistency
• Example: Performance

• Time, memory usage
• Cache misses, I/O operations, instruction execution count, etc.

• Law of large numbers
• Taking multiple measurements to reduce error
• Trade-off with cost

62

Measurement Reliability

63

McNamara Fallacy

• Measure whatever can be easily measured

• Disregard that which cannot be measured easily

• Presume that which cannot be measured easily is not important

• Presume that which cannot be measured easily does not exist

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-numbers-in-education

Survivorship Bias

Outline
Measurements and Metrics

How to use Measurements and Metrics

Case Study: Autonomous Vehicle Software

Risks and Challenges

Metrics and Incen?ves

http://dilbert.com/strips/comic/1995-11-13

Goodhart’s law: “When a measure becomes
a target, it ceases to be a good measure.”

67

6
8

Incentivizing Productivity
• What happens when developer bonuses are based on:

• Lines of code per day?
• Amount of documentation written?
• Low number of reported bugs in their code?
• Low number of open bugs in their code?
• High number of fixed bugs?
• Accuracy of time estimates? 69

70

What You Need to Know

Metrics are important in
Software Engineering

Apply goal-oriented
approaches to software
metrics

Provide examples of
metrics for software
qualities and process

Understand limitations
and dangers of decisions
and incentives based on
measurements

Questions to Consider (Projects)
• What properties do we care about and how do we measure them?
• What is being measured? Does it (to what degree) capture the

thing you care about? What are its limitations?
• How should it be incorporated into process?
• What are potentially negative side effects or incentives?

71

