
Introduction to
Software Architecture

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Administrivia

• Regrades: “requests can be submitted via Gradescope. The
regrade period is open for one week after grades have been
released for a particular assignment.”

• P1B Reopened for Late Submissions (needed for feedback!)

• P1B Score Distribution:

Smoking Section

•Last full row

Learning Goals
Understand the abstraction level of architectural reasoning

Appreciate how software systems can be viewed at different abstraction levels

Distinguish software architecture from (object-oriented) software design

Explain the importance of architectural decisions

Integrate architectural decisions into the software development process

Document architectures clearly, without ambiguity

Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting Software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation

Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting Software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation

8

1
2

1
4

Each views abstracts reality to focus on
conveying specific information
• They have a well-defined purpose

• Show only necessary information

• Abstract away unnecessary details

• Use legends and annotations to remove ambiguity

• Multiple views together produce a richer understanding

Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting Software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation

Case Study: Autonomous Vehicle Software

Case Study: Apollo
Check out the “side pass” feature from the video:

Case Study: Apollo

Goal: Try to have a high-level understanding of how the side pass feature is
built and integrated into the system.

Let’s explore the code and the documentation of Apollo to find parts
associated with the side pass feature:

Source: https://github.com/ApolloAuto/apollo
Doc: https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html

https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html

Activity: Apollo
Discuss in teams of 3 - 4 on what parts are associated with the side
pass feature based on the 6 diagrams in the handout:

● circle components that you think implement this feature

Apollo Software Architecture

https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md

Apollo Hardware Interface Architecture

https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

Apollo Hardware / Vehicle Overview

https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

Apollo Perception Module

Apollo Machine Learning (ML) Models

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex Autonomous Driving Systems: A Case Study on Apollo. In
Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063

Apollo Software Stack

https://github.com/ApolloAuto

Apollo Software Stack (Evolution)

Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting Software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation

Software Architecture

The software architecture of a program or computing system
is the structure or structures of the system, which comprise
software elements, the externally visible properties of those
elements, and the relationships among them.

[Bass et al. 2003]

This definition is ambivalent to
whether the architecture is known

or whether it’s any good!

Architectural Views

Abstraction
Elements: roles, responsibilities, behaviors, properties
Relationships between elements
Relationships to non-software elements

Hardware, external systems

Apollo Software Architecture

https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md

Apollo Machine Learning (ML) Models

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex Autonomous Driving Systems: A Case Study on Apollo. In
Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063

Why do we use Architectural Views?

• Reduce complexity through abstraction
• Facilitate internal and external communication
• Describe design decisions
• Prescribe implementation constraints

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Apollo Software Stack

https://github.com/ApolloAuto

Why do we use Architectural Views?

• Reduce complexity through abstraction
• Facilitate internal and external communication
• Describe design decisions
• Prescribe implementation constraints
• Relates to organizational structure

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Conway’s Law

Company Structure Software Architectureinfluences

Why do we use Architectural Views?

• Reduce complexity through abstraction
• Facilitate internal and external communication
• Describe design decisions
• Prescribe implementation constraints
• Relates to organizational structure
• Reason about and manage change

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Apollo Software Stack (Evolution)

Software Design vs.
Architecture

Levels of Abstraction

● Requirements
• high-level “what” needs to be done

● Architecture (high-level design)
• high-level “how”, mid-level “what”

● Software Design (low-level design, e.g., design patterns)
• mid-level “how”, low-level “what”

● Code / Implementation
• low-level “how”

Design vs. Architecture

Design Questions
• How do I add a menu item in NodeBB?
• How can I make it easy to create posts in

NodeBB?
• What lock protects this data?

• How does Google rank pages?
• What encoder should I use for secure

communication?

• What is the interface between objects?

Architectural Questions
• How do I extend NodeBB with a plugin?

• What threads exist and how do they
coordinate?

• How does Google scale to billions of hits
per day?

• Where should I put my firewalls?

• What is the interface between
subsystems?

Model

Objects

Model
/ Subject

View

Controller

Factory

Observer

Command

Objects → Design Patterns

Design Patterns

Design Patterns

Architecture

Architecture

Architecture

Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting Software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation

https://www.instagram.com/architectanddesign

ht
tp
s:
//
w
w
w
.a
rc
hd

ai
ly
.c
om

/

https://www.mykonosceramica.com/

w
w
w
.over-view

.com

Every system has an architecture

• Whether you know it or not

• Whether you like it or not

• Whether it is documented or not

If you don’t consciously elaborate the
architecture, it will evolve by itself!

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

Architectural
Decisions

Non-Functional
Requirements

Technical
Business
Social

Software
Architecture

influences

influences

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

influences

The Twin Peaks Model

B. Nuseibeh, "Weaving together requirements and architectures". 2001

Agile and Architecture
“The best architectures, requirements, and designs emerge from self-organizing
teams”. The Twelve Principles of the Agile Manifesto

“Control leads to
compliance; autonomy
leads to engagement.”

Daniel H. Pink

https://medium.com/@beatrix_66005/the-best-architectures-requirements-and-designs-emerge-from-self-organizing-teams-8b54ebc4c6b0

https://agilemanifesto.org/principles.html

The Zipper Model

Common
Architectural

Styles

https://www.thespruce.com/top-architectural-styles-4802083

Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Pipes and Filters in the Wild

Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Object-Oriented Organization in the Wild

Event-Driven Architecture

Event-Driven Architectures in the Wild

Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Layered Systems in the Wild

Why Document Architecture?
● Blueprint for the system

• Artifact for early analysis
• Primary carrier of quality attributes
• Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, both today and 20
years from today
• As long as the system is built, maintained, and evolved according to its

documented architecture

● Support traceability

Guidelines for selecting a notation
● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or
processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

• Each view of architecture should fit on a page
• Use hierarchy

