
Architecture: Microservices
17-313: Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/


Smoking Section

•Last full row

2



Learning Goals

• Understand the difference between traditional monolithic and 
modular software architectures
• Explore various approaches to modularity, assess their respective 

benefits and drawbacks, and reason about when to use them 
and how to use them well

• Monoliths, Plugins, Services, Microservices, Modular Monoliths



Outline

• Monoliths vs. Modular Architecture
• Service-Based Architecture
• Case Study: Chrome Web Browser

• Microservices
• Principles of Microservices
• Advantages and Challenges of Microservices



Monolithic vs. Modular Architectures



Monolithic Modular





Monolithic Styles

Source: https://www.seobility.net (CC BY-SA 4.0)





Modularity comes in many ways

• Plug-in architectures
• Distinct code repositories, linked-in to a monolithic run-time
• Examples: Linux kernel modules, NodeBB themes, VS Code extensions
• Separates development, but runs as “one”

Core System Plugin 
API

Plugin 1

Plugin 2

Plugin 3



Modularity comes in many ways

• Plug-in architectures
• Service-oriented architectures
• Distinct processes communicating via messages (e.g., Web browsers)
• Separates run-time resource management and failure / security issues. 

• Distributed micro-services
• Independent, autonomous services communicating via web APIs
• Separates almost all concerns



SERVICE-BASED ARCHITECTURES



Case Study: Web Browsers

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Multi-threaded browser in single process

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Multi-process browser with IPC

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


Navigating to a web site uses service 
requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part1


https://webperf.tips/tip/browser-process-model



https://webperf.tips/tip/browser-process-model/

Multi-Process: Benefits

Security

Reliability

Performance



Multi-Process: Costs and Trade-offs

• Memory Overhead
• spinning up new processes requires additional memory allocation

• Process Creation Overhead
• more expensive to create a new process rather than simply a new thread 

in an existing process

• IPC Overhead
• communicating across processes is slower than keeping communication 

completely localized within a single process



Service-Based Architectures: Pros and Cons

•✅ Pros
• Ability to change components independently
• Independent processes (Isolation, Security)
• Focusing on doing one thing well

•❌ Cons
• Increased complexity
• Increased cost and overheads
• Difficult to ensure data consistency across different services



MICROSERVICES





Microservices



“Small autonomous services 
that work well together”

 
 Sam Newman



Monolith vs. Service-Based vs. Microservice



Netflix Microservices

3
3

(as of 2016)



Why Can't Netflix Use a Monolithic 
Architecture?

• Requires an architecture that can handle 
various computational demands
• Need scalability must support millions of users 

worldwide
• Need fault tolerance to maintain a seamless 

user experience
• New features and improvements need to be 

rolled out rapidly



Netflix Microservices
• User Subscriptions
• Banner Ad
• Popular Shows
• Trending Now
• Continue Watching
• My List (saved shows)
• Notifications
• User Management
• Subtitles
• …

3
5

(as of 2016)



3
6

https://www.youtube.com/watch?v=V_oxbj-a1wQ



https://www.youtube.com/watch?v=V_oxbj-a1wQ



Online Boutique: Guess some microservices

3
8

https://cymbal-shops.retail.cymbal.dev



Online Boutique: Microservice Architecture

3
9

https://cymbal-shops.retail.cymbal.dev



Service Language Description

frontend Go Exposes an HTTP server to serve the website. Does not require signup/login and 
generates session IDs for all users automatically.

cartservice C# Stores the items in the user's shopping cart in Redis and retrieves it.

productcatalogservice Go Provides the list of products from a JSON file and ability to search products and get 
individual products.

currencyservice Node.js Converts one money amount to another currency. Uses real values fetched from 
European Central Bank. It's the highest QPS service.

paymentservice Node.js Charges the given credit card info (mock) with the given amount and returns a 
transaction ID.

shippingservice Go Gives shipping cost estimates based on the shopping cart. Ships items to the given 
address (mock)

emailservice Python Sends users an order confirmation email (mock).

checkoutservice Go Retrieves user cart, prepares order and orchestrates the payment, shipping and the 
email notification.

recommendationservice Python Recommends other products based on what's given in the cart.
adservice Java Provides text ads based on given context words.

loadgenerator Python/Locust Continuously sends requests imitating realistic user shopping flows to the frontend.

https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/frontend
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/cartservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/productcatalogservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/currencyservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/paymentservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/shippingservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/emailservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/checkoutservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/recommendationservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/adservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/loadgenerator


Scalability

4
1

Source: http://martinfowler.com/articles/microservices.html



Types of Scaling: Vertical vs. Horizontal



Data Management and Consistency

4
3 Source: http://martinfowler.com/articles/microservices.html



Deployment and Evolution

4
4 Source: http://martinfowler.com/articles/microservices.html



Conway’s Law

“Products” not “Projects”

”Any organization that designs a system 
(defined broadly) will produce a design 

whose structure is a copy of the 
organization's communication structure.”





MICROSERVICES: PRINCIPLES



Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently Consumer First Isolate Failures

Sam Newman’s Principles of Microservices



Domain-driven modeling

• Model services around business capabilities



Domain-driven modeling



Domain-driven modeling

Remember Conway’s Law?



Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently Consumer First Isolate Failures

Sam Newman’s Principles of Microservices



Culture of Automation

• API-Driven Machine Provisioning

• Continuous Delivery

• Automated Testing



Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd

Continuous Delivery



Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently Consumer First Isolate Failures

Sam Newman’s Principles of Microservices



Deploy Independently

• One Service Per OS

• Consumer-Driven Contracts

• Multiple coexisting versions



One Service Per OS



Consumer-Driven Contracts

https://medium.com/@japneetkaur11/contract-testing-with-pact-17909b838de9



Multiple coexisting versions



Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently Consumer First Isolate Failures

Sam Newman’s Principles of Microservices



Hide implementation details

• Design your APIs carefully

• It’s easier to expose details later than hide them

• Do not share your database!



Hide implementation details

Recall: Encapsulation in OOP



Sharing database: Anti-pattern



Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently Consumer First Isolate Failures

Sam Newman’s Principles of Microservices



Decentralized Governance

• Mind Conway’s Law
• You Build It, You Run It
• Embrace team autonomy
• Internal Open Source Model



Mind Conway’s Law

“Products” not “Projects”





Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently Consumer First Isolate Failures

Sam Newman’s Principles of Microservices



Consumer First

• Encourage conversations

• API Documentation

• Service Discovery



Encourage conversations



Document your APIs!



Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently Consumer First Isolate Failures

Sam Newman’s Principles of Microservices



Isolate Failure

• Avoid cascading failures

• Timeouts between components

• Fail fast aka Design for Failure
• Bulkheading / Circuit breakers



blogs.halodoc.io

Closed Circuit Open Circuit



Are microservices always the 
right choice?

7
5



Advantages of Microservices

• Ship features faster and safer
• Amenable to horizontal scaling
• Target security concerns via isolation
• Allow the interplay of different systems and languages; no 

commitment to a single technology stack
• Easily deployable and replicable
• Embrace uncertainty, automation, and faults
• Better alignment with organization structure



Microservice Challenges
• Too many choices
• Lag between investment and payback
• Complexities of distributed systems

• network latency, faults, inconsistencies
• testing challenges

• Monitoring is more complex
• More system states
• More points of failure
• Operational complexity
• Frequently adopted by breaking down a monolithic application



Microservices Overhead

https://martinfowler.com/bliki/MonolithFirst.html



https://www.milanjovanovic.tech/blog/what-is-a-modular-monolith


