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Learning Goals

 Learn to discuss risk in a project

» Strategize about ways to mitigate risk

* Learn to get early feedback to reduce risk
* Find ways to catch our technical errors
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Administrivia

« P2B Due Fri, Sept 26th @ 11:59pm
« Midterm review session Sunday October 5t 7pm
« Midterm 1 Oct 9t"
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| appreciate the honesty.

Pick a password

Don't reuse your bank password, we didn't

spend a lot on security for this app.
At least 6 characters
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Definition: Risk

Risk is a measure of the potential inability to achieve overall program
objectives within defined cost, schedule, and technical constraints.
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Risk is defined by two key components

S
The probability (or likelihood) of failing The consequences (or impact) of
to achieve a particular outcome failing to achieve that outcomes
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Internal vs. External Risk

Risks that we can control Risks that we cannot control
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Levels of Risk Management

1. Crisis management: Fire fighting; address risks only after they have
become problems.

2. Fix on failure: Detect and react to risks quickly, but only after they
have occurred.

3. Risk mitigation: Plan ahead of time to provide resources to cover
risks if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make
it possible for risks to exist at all.
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Levels of Risk Management

3. Risk mitigation: Plan ahead of time to provide resources to cover
risks if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make
it possible for risks to exist at all.
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Risk Management

Risk ldentification

Risk Assessment /Hisk Analysis

\ Risk Prioritization
Risk-Management Planning

|
Risk Control / Risk Besolution

\\Flisk Monitoring
|

Risk Management
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Team Exercise: Risk Identification

e What risks exist for the scooter app?
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Risk assessment matrix

TABLE III. Risk assessment matrix

RISK ASSESSMENT MATRIX
SEVERITY | catastrophic Critical Marginal Negligible
PROBABILI (1) 2 (3) (4)
F"{",'G’"t : : Medium
Prc;:;a)ble : X Medium
°°°?§;°“" : Medium
“g;’“ Medium Medium
'““"’(‘E';ab“ Medium Medium Medium
Eliminated
(F)
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Aviation failure impact categories

* No effect - failure has no impact on safety, aircraft operation, or
crew workload

» Minor - failure is noticeable, causing passenger inconvenience or
flight plan change

 Major - failure is significant, causing passenger discomfort and
slight workload increase

- Hazardous - high workload, serious or fatal injuries
 Catastrophic - |oss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA,
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Risk Analysis

Probability Size of Loss Risk Exposure
(%) (weeks) (weeks)
Overly optimistic schedule 50% 5 25
Additional features added by marketing (specific features unknown) 35% 8 2.8
Project approval takes longer than expected 25% 4 10
Management-level progress reporting takes more developer time than expected 10% 1 0.1
New programming tools do not produce the promised savings 30% 5 1.5
Total 12
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Exercise: Risk Analysis

e What is the risk severity for your scooter app?
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Risk Prioritization
Focus on risks with the highest exposure

Severity A
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Risk Control

e What steps can be taken to avoid or mitigate the risk?

e Can you better understand and forecast the risk?

e Who will be responsible for monitoring and addressing the
risk?

e Have risks evolved over time?

e Bake risks into your schedule

o Don't assume that nothing will go wrong between now and the end of
the semester!
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DECIDE Model

Detect that the action necessar
Estimate the significance of the a¥
choose a desirable outcome

Identify actions needed in order to
achieve the chosen option
p0 the necessary action to achieve

change |
evaluate the effects of the action




Discussion: Risk Elimination and Mitigation

e How can you eliminate/mitigate risk for your scooter app?
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The Swiss cheese model

Mixed

Regulatory messages

narrowness
Incomplete
procedures

Production  shifting

pressures

Institutional

Organization

Profession
& Team

Responsibility

Inadequate Attention

training distractions

Clumsy
technology

Deferred
maintenance

Individual

Technical
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OODA Loop

Observe Orient Decide Act
P Implicit
Implicit ;
Guidance &%do?]?rc;
Unfolding & Control
Circumstances\y*
B Feed . Feed .
_ Decision Action
| Obsenations j——3- | (Hypothesis) (Test)
/\————— orward \ Forward
Qutside :
Information
Unfolding
Unfolding Interaction
Interaction Feedback With
With Feedback Environment
Environment Feedback l
John Boyd's OODA Loop
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No matter what you ¢

s

=

- Some idiots won't follow your rules © \\‘N
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Pre-mortems

* "unlike a typical critiquing session, in which project team members

are asked what might go wrong, the premortem operates on the
assumption that the 'patient' has died, and so asks what did go

wrong."

Project Management

Performing a Project
Premortem

by Gary Klein

Buy Copies
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—~SCIENTIFIC AMERICAN

ARE ALL PRETTY SURE WE ARE
WAY ABOVE AVERAGE

Why dO we ma ke misa ke S? . S e
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Generalization

» ...in the words of psychologist Tom Stafford, we can’t find our typos

because we're engaging in a high-level task in writing. Our
brains generalize simple, component
parts to focus on complex tasks, so essentially

we can’t catch the small details because we’re focused on a large
task.
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Boredom can give rise to errors,
adverse patient events, and
decreased productivity—costly
and unnecessary outcomes for
consumers, employees, and
organizations alike. As a function
of boredom, individuals may feel
over-worked or under-employed,
and become distracted, stressed,
or disillusioned. Staff who are
bored also are less likely to
engage with or focus on their
work.
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Original Articles

Boredom in the Workplace: Reasons, Impact, and

Solutions

Michelle Cleary &, PhD, RN, Jan Sayers, PhD, RN, Violeta Lopez , PhD, RN & Catherine Hungerford , PhD, RN

Pages 83-89 | Received 24 Jun 2015, Accepted 13 Aug 2015, Published online: 10 Feb 2016
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Abstract

Boredom in the workplace is not uncommon, and has been discussed widely in
the academic literature in relation to the associated costs to individuals and
organizations. Boredom can give rise to errors, adverse patient events, and
decreased productivity—costly and unnecessary outcomes for consumers,

employees, and organizations alike. As a function of boredom, individuals may

Related rese

People also
read
——
Boredom at work
spillover model ¢

work motivation
boredom >
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Cognitive Load

» ..." students who switch back and forth between attending to a
classroom lecture and checking e-mail, Facebook, and IMing with
friends”

Computers & Education 62 (2013) 24-31

lists ilabl

at SciVerse Sci Direct

Computers & Education

journal homepage: www.elsevier.com/locate/compedu

DESIGN ATED Laptop multitasking hinders classroom learning for both users and nearby peers

Faria Sana?, Tina Weston ®, Nicholas J. Cepeda ™
s M o Kl N G * McMaster University. Department of Psychology, Neuroscience, & Behaviour, 1280 Main Street West, Hamilton. ON L8S 4K1. Canada

® York University. Department of Psychology. 4700 Keele Street. Toronto, ON M3J 1P3, Canada
E “York University, LaMarsh Centre for Child and Youth Research, 4700 Keele Street, Toronto, ON M3] 1P3, Canada

ARTICLE INFO

ABSTRACT
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Can we remove human
error?
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catch
Can we remove human

error?

Can we catch human error before we ship our code?.
Can we automate tasks to prevent problems?
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Approach:
Automate what we can
Review what we cannot




CI/CD Pipeline overview

Tests Run J

SR SR

Code MergedJ




Continuous Integration:

Catch mistakes before you push your code!
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History of CI

:;1_;_; (1999) Extreme Programming (XP) rule: “Integrate Often”
1 (2000) Martin Fowler posts “Continuous Integration” blog
Cenisecorvel (2001) First Cl tool
@Jenkins (2005) Hudson/Jenkins
& Travis I (2011) Travis C|

%2 (2019) GitHub Actions
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Example CI/CD Pipeline

= \

\‘*J J
CODE
. <[>
‘ COMMIT % . QQ REVIEW STAGING PRODUCTION
@ o— 000 =] { @
BUILD UNIT  INTEGRATION
TE TESTS
& CD PIPELINE
CI PIPELINE
RELATED CODE
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Developers say:

Cl helps us catch bugs earlier
Cl makes us less worried about breaking our builds

Cl lets us spend less time debugging

“[CI] does have a pretty big impact on [catching bugs]. It allows us to find issues
even before they get into our main repo, ... rather than letting bugs go
unnoticed, for months, and letting users catch them.”
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Developers report:

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

M Higher Similar Lower
0% 25% 50% 75% 100%
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Developers report:

Do developers on projects with Cl give (more/similar/less) value to

automated tests?
Do projects with CI have (higher/similar/lower) test quality?

M Higher Similar Lower
0% 25% 50% 75% 100%
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Developers report:

Do developers on projects with Cl give (more/similar/less) value to

automated tests?
Do projects with Cl have (higher/similar/lower) test quality?
Do projects with Cl have (higher/similar/lower) code quality?

B Higher Similar Lower
0% 25% 50% 75% 100%
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Developers report:

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

Do projects with Cl have (higher/similar/lower) test quality?

Do projects with CI have (higher/similar/lower) code quality?

Are developers on projects with Cl (more/similar/less) productive?

[ | Higher Similar Lower
0% 25% 50% 75% 100%
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Observation

Cl helps us catch errors
before others see them




Cl can run static and dynamic analysis

J ¢ Require approval from specific reviewers before merging Add rule «
Rulesets ensure specific people approve pull requests before they're merged.
All checks have passed Hide all checks
11 successful checks
v Homework 1 Check / Homework 1 (ubuntu-latest, 16) (pull_request) Successfulin 1m Details
7 Lint / Lint (ubuntu-latest, 16) (pull_request) Successful in 3m Details
v (@) Test/ Test (ubuntu-latest, 16, mongo-dev) (pull_request) Successfulin 6m Details
v Q Test [ Test (ubuntu-latest, 16, mongo) (pull_request) Successful in 5m Details
v Test [ Test (ubuntu-latest, 16, redis) (pull_request) Successfulin 5m Details
o Test | Test (ubuntu-latest, 16, postgres) (pull_request) Successful in 6m Details
This branch has no conflicts with the base branch
Merging can be performed automatically.
Merge pull request - You can also open this in GitHub Desktop or view command line instructions.
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Static Validation

» Style guides
« Compiler warnings and errors
» Static analysis

» FindBugs

* clang-tidy

» Pylons Webtest

e Code review
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https://findbugs.sourceforge.net/
https://findbugs.sourceforge.net/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/

Style Guide

» List of environment-specific preferred practices

e Could include:
e Libraries / idioms to use
* Formatting
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Style Guide Examples

* https://www.python.org/dev/peps/pep-0008/

» https://github.com/airbnb/javascript

« https://subversion.apache.org/docs/community-
guide/conventions.html

« https://google.github.io/styleguide/cppguide.htm|
* https://google.github.io/styleguide/pyguide.html

* Linux kernel style guide
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https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Who writes these style guides?
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Who writes these style guides?

(ad hoc T &) Self-proclaimed code protectors

(wisdom) Team veteran developers

(copy-paste) Google search for blog posts by experts
(empirical study) Evidence-based analysis of code styles that

correlate with bugs
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For problems we can’t
easily automate, we can
perform code review




Boeing Model 299 test on October 30,
1935.

* Plane crashed because of
locked elevator control
surface (opposite effect of
MCAS)

* 4 engines were deemed
“too complex”

» Test pilots developed
checklists to help them fly
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Checklists help manage complex processes

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist
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The Pronovost
Checklist

Central venous catheters, or
lines, are used for medications,
r. e e r ro n ov O S blood, fluids or nutrition and

can stay in for days or weeks.
But bacteria can grow in the
line and spread a type of infec-
tion to the bloodstream, which
causes death in one out five
patients who contract it. This
five-step checklist for doctors
and nurses to use before
inserting a line can prevent
infections and death.

1. Wash hands with soap and
water or an alcohol cleanser

2. Wear sterile clothing—

a mask, gloves, and hair
covering—and cover patient
with a sterile drape, except for
a very small hole where the
line goes in

3.Clean patient’s skin with
chlorhexidine (a type of soap)
when the lineis put in

4. Avoid veins in arm and leg,
which are more likely to get
infected than veins in chest

5. Check the line for infection
each day and remove when no
longer needed

https://www.wsj.com/articles/SB10001424052748704364004576131963185893084

Software and Societal %‘dl‘llt‘_g‘lt‘
Systems Department Mellon

* Inspired by B-17 Story

» After checklist, ten-day line-
infection rate went from eleven
per cent to zero

* In 15 months, only two line
infections occurred

* For one hospital, the checklist
had prevented forty-three
infections and eight deaths,
and saved $S2M

University



Difference between Pilot
and Doctor error?

Which is Developer error more like?




How to create a checklist?

« Start with problems we have seen before
» “Safety regulations are written in blood”

» Justify why this is not automatable

 Not all checklist items need to be very specific
* An item could be “does this team know we are proposing this change”
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Activity: Create a checklist

e In pairs, think about dumb mistakes your “friend” made the
last time they were coding.
« Write your names on a piece of paper.

» Write down two checklist items that would have caught those
errors.

* Divide into teams: left and right sides of the classroom.

* Which team had the most unique/good entries in their list?
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Expectations and
Outcomes for code review




Motivation

* Linus's Law: “Given enough eyeballs, all bugs are shallow.”
* - The Cathedral and the Bazaar, Eric Raymond

\
3oj Relative cost to fix bugs,
based on time of detection
25x
20x
15x
10x
5x
0x
quuin:ements / Coding Integration / ) AE(‘:/:;::\:: 3 Production /
rchitecture Component Testing Testing Post-release
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Code Review at Microsoft

Ranked Motivations From Developers
I Top [ Second [ ] Third

Finding Defects

Code Improvement
Alternative Solutions
Knowledge Transfer
Team Awareness
Improve Dev Process
Avoid Build Breaks
Share Code Ownership
Track Rationale

Team Assessment

ﬂamﬂgm

o -
~n
8_.

400

D
o
o

Responses

Bacchelli, Alberto and Christian Bird. "Expectations, outcomes, and challenges of modern code review."
Proceedings of the 2013 Intemational Conference on Software Engineering. IEEE Press, 2013.

Systems Department Mellon
University
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Outcomes (Analyzing Reviews)

Code Improvements
Understanding

Social Communication
Defects

External Impact
Testing

Review Tool
Knowledge Transfer
Misc

I

0% 10% 20% 30%
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Mismatch of Expectations and Outcomes

 Low quality of code reviews
» Reviewers look for easy errors, as formatting issues
 Miss serious errors

» Understanding is the main challenge
« Understanding the reason for a change
» Understanding the code and its context
« Feedback channels to ask questions often needed

» No quality assurance on the outcome

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University



Code Review at Google

* Introduced to “force developers to write code that other
developers could understand”

* Three benefits:
 checking the consistency of style and design
« ensuring adequate tests

* improving security by making sure no single developer could commit
arbitrary code without oversight

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code Review:
A Case Study at Google. International Conference on Software Engineering
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Reviewing Relationships

Project lead

Education
Maintaining
Maintaining norms
ili norms Gatekeepin
Readability D ev elo er PG ~iher
reviewers P teame
Education P - -
Maintaining ' ucation
norms Accident prevention
New team Other team
members members
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The State of Code Review survey

What do you believe are the most important benefits of code review?
0% 10% 20% 30% 404 50% 60% 70% HB0% 90%
Improved Software Quality
Sharing Knawledge Across the Team
Adherence to Coding Standards/Conventions
Ability to Mentor Less-Experienced Developers
Increased Collaboration

Reduced Project Time/Costs

Ability to Comply with Regulatory Standards 31%

Internal Audits 2B%
Ability to Set Expectations 28%

Enhanced Customer Satisfaction/Retention 26%

Enhanced Mobility of Code 26%

Strengthen Competitive Advantage 20%
150/Industry Certifications 16%
n=1129
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Code Review

« Start with the “big ideas”

« Automate the little things

 Focus on understanding

« Remember a person wrote the code

« Don't overwhelm the person with feedback

Carnegie
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Don’t forget that coders are people with feelings

e A coder’s self-worth is in their artifacts
e Cl can avoid embarrassment

- [dentify defects, not alternatives; do not criticize coder
* “you didn't initialize variable a” -> “| don’t see where variable a is initialized”

» Avoid defending code; avoid discussions of solutions/alternatives
« Reviewers should not “show off” that they are better/smarter

- Avoid style discussions if there are no guidelines

» The coder gets to decide how to resolve fault
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Risk Analysis:

* Probability a human makes a mistake: Very Likely
« Severity: ranges, but could be extensive

Severity |

[aterve

Solution:

Use Cl to catch your mistakes, make you
look better, and mitigate your risks! -

Use Code review to teach and learn
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