Build Software Safely!

17-313: Foundations of Software Engineering
https://cmu-313.github.io

Michael Hilton and Chris Timperley
Fall 2025

3 n
Software and Societal (J:dl negie
Systems Department Mellon

University

https://cmu-313.github.io/
https://cmu-313.github.io/
https://cmu-313.github.io/

Learning Goals

 Learn to discuss risk in a project

» Strategize about ways to mitigate risk

* Learn to get early feedback to reduce risk
* Find ways to catch our technical errors

Carnegie

Software and Societal =
S3 Mellon

Systems Department] .
/ . University

Administrivia

« P2B Due Fri, Sept 26th @ 11:59pm
« Midterm review session Sunday October 5t 7pm
« Midterm 1 Oct 9t"

3 n
Software and Societal (mell negie
Systems Department Mellon

University

Smoking Section

e L ast full row

DESIGNATED
SMOKING
AREA

IS

Systems Department Mellon
University

33 Software and Societal Cal‘llt‘-gie

R

isk

Software and Societal

=& Tony Webster @ -
‘ @webster m X

| appreciate the honesty.

Pick a password

Don't reuse your bank password, we didn't

spend a lot on security for this app.
At least 6 characters

‘{\i . Continue \b

8:20 PM - 15 Sep 2018

5,868 Retweets 15,672 Likes y e . ﬁ Q e @ ‘ 0

Q s8 11 59k @ 16K)

Carnegie

Mellon

S3

Systems Department

Uniw

Definition: Risk

Risk is a measure of the potential inability to achieve overall program
objectives within defined cost, schedule, and technical constraints.

Softwa re and Soaetal Car negle
53 DATerine Mellon
University

Risk is defined by two key components

S
The probability (or likelihood) of failing The consequences (or impact) of
to achieve a particular outcome failing to achieve that outcomes

RUA o
Software and Societal l(ﬁdlﬁlt 2 (o
LI Boy7 Syrteras Dagarinrent ‘11101

University

Internal vs. External Risk

Risks that we can control Risks that we cannot control

Software and Societal (ji-ll‘llt‘git‘
Systems Department Mellon

University

Levels of Risk Management

1. Crisis management: Fire fighting; address risks only after they have
become problems.

2. Fix on failure: Detect and react to risks quickly, but only after they
have occurred.

3. Risk mitigation: Plan ahead of time to provide resources to cover
risks if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make
it possible for risks to exist at all.

hl = L
q z n Software and Societal l(\;/[alﬁlegle
a8 hen il amime M LG Sa s elion

University

Levels of Risk Management

3. Risk mitigation: Plan ahead of time to provide resources to cover
risks if they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make
it possible for risks to exist at all.

Carnegie

Software and Societal e
S\5D Sustems Depaitmens N[e!lon .
University

Risk Management

Risk ldentification

Risk Assessment /Hisk Analysis

\ Risk Prioritization
Risk-Management Planning

|
Risk Control / Risk Besolution

\\Flisk Monitoring
|

Risk Management

hl = L
q n Software and Societal Car negie
Cyrictne s
VEv/a ITRICNA)G

Mellon

University

Team Exercise: Risk Identification

e What risks exist for the scooter app?

Al = L
Software and Societal](;A[dlﬁlt‘glt‘
Systems Department el 0117 .
University

Risk assessment matrix

TABLE III. Risk assessment matrix

RISK ASSESSMENT MATRIX
SEVERITY | catastrophic Critical Marginal Negligible
PROBABILI (1) 2 (3) (4)
F"{",'G’"t : : Medium
Prc;:;a)ble : X Medium
°°°?§;°“" : Medium
“g;’“ Medium Medium
'““"’(‘E';ab“ Medium Medium Medium
Eliminated
(F)

Carnegie

Software and Societal https://www.system-safety.org/Documents/MIL-STD-882 E.pdf Mellon
Systems Department E .
University

Aviation failure impact categories

* No effect - failure has no impact on safety, aircraft operation, or
crew workload

» Minor - failure is noticeable, causing passenger inconvenience or
flight plan change

 Major - failure is significant, causing passenger discomfort and
slight workload increase

- Hazardous - high workload, serious or fatal injuries
 Catastrophic - |oss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA,

Al = L
Software and Societal (Adl negie
Systems Department Mellon

University

Risk Analysis

Probability Size of Loss Risk Exposure
(%) (weeks) (weeks)
Overly optimistic schedule 50% 5 25
Additional features added by marketing (specific features unknown) 35% 8 2.8
Project approval takes longer than expected 25% 4 10
Management-level progress reporting takes more developer time than expected 10% 1 0.1
New programming tools do not produce the promised savings 30% 5 1.5
Total 12

hl = L
q z n Software and Societal l(\;fldlﬁlegle
a8 hen il amime M LG Sa s '1e1101

Uniw

Exercise: Risk Analysis

e What is the risk severity for your scooter app?

Software and Societal Cal‘llt‘gie
Systems Department Mellon
University

Risk Prioritization
Focus on risks with the highest exposure

Severity A

Carnegie

D Software and Societal] egie
Systems Department l\"le!lon .
University

Risk Control

e What steps can be taken to avoid or mitigate the risk?

e Can you better understand and forecast the risk?

e Who will be responsible for monitoring and addressing the
risk?

e Have risks evolved over time?

e Bake risks into your schedule

o Don't assume that nothing will go wrong between now and the end of
the semester!

Al = L
33 Software and Societal Car negie

Systems Department Me!lori :
/ . University

DECIDE Model

Detect that the action necessar
Estimate the significance of the a¥
choose a desirable outcome

Identify actions needed in order to
achieve the chosen option
p0 the necessary action to achieve

change |
evaluate the effects of the action

Discussion: Risk Elimination and Mitigation

e How can you eliminate/mitigate risk for your scooter app?

= %
Software and Societal (J:dl negie
Systems Department l\'le!lon .
University

The Swiss cheese model

Mixed

Regulatory messages

narrowness
Incomplete
procedures

Production shifting

pressures

Institutional

Organization

Profession
& Team

Responsibility

Inadequate Attention

training distractions

Clumsy
technology

Deferred
maintenance

Individual

Technical

Carnegie

Software and Societal
Systems Department

Mellon
U

OODA Loop

Observe Orient Decide Act
P Implicit
Implicit ;
Guidance &%do?]?rc;
Unfolding & Control
Circumstances\y*
B Feed . Feed .
_ Decision Action
| Obsenations j——3- | (Hypothesis) (Test)
/\————— orward \ Forward
Qutside :
Information
Unfolding
Unfolding Interaction
Interaction Feedback With
With Feedback Environment
Environment Feedback l
John Boyd's OODA Loop

Al = L
53 Software and Societal Car negie

Systems Department Mellon
Uniw

No matter what you ¢

s

=

- Some idiots won't follow your rules © \\‘N

x A
D Software and Societal }arnegie
Systems Department Mellon

University

Pre-mortems

* "unlike a typical critiquing session, in which project team members

are asked what might go wrong, the premortem operates on the
assumption that the 'patient' has died, and so asks what did go

wrong."

Project Management

Performing a Project
Premortem

by Gary Klein

Buy Copies

Carnegie

Software and Societal ; c
Systems Department Me!lon .
University

—~SCIENTIFIC AMERICAN

ARE ALL PRETTY SURE WE ARE
WAY ABOVE AVERAGE

Why dO we ma ke misa ke S? . S e

Software and Societal %:‘dl‘llt‘_g‘lt‘
Systems Department Mellon

University

Generalization

» ...in the words of psychologist Tom Stafford, we can’t find our typos

because we're engaging in a high-level task in writing. Our
brains generalize simple, component
parts to focus on complex tasks, so essentially

we can’t catch the small details because we’re focused on a large
task.

Carnegie

Software and Soc t I
Mellon
530 Systems D epar tm University

Boredom can give rise to errors,
adverse patient events, and
decreased productivity—costly
and unnecessary outcomes for
consumers, employees, and
organizations alike. As a function
of boredom, individuals may feel
over-worked or under-employed,
and become distracted, stressed,
or disillusioned. Staff who are
bored also are less likely to
engage with or focus on their
work.

Software and Societal
Systems Department

Original Articles

Boredom in the Workplace: Reasons, Impact, and

Solutions

Michelle Cleary &, PhD, RN, Jan Sayers, PhD, RN, Violeta Lopez , PhD, RN & Catherine Hungerford , PhD, RN

Pages 83-89 | Received 24 Jun 2015, Accepted 13 Aug 2015, Published online: 10 Feb 2016

&6 Download citation hitps://doi.org/10.3109/01612840.2015.1084554 ™ Chesk orupdstes

[“LEHIETGEEY (s Figures & data @ References &k Citations Ll Metrics & Reprints & Permissions -

Abstract

Boredom in the workplace is not uncommon, and has been discussed widely in
the academic literature in relation to the associated costs to individuals and
organizations. Boredom can give rise to errors, adverse patient events, and
decreased productivity—costly and unnecessary outcomes for consumers,

employees, and organizations alike. As a function of boredom, individuals may

Related rese

People also
read
——
Boredom at work
spillover model ¢

work motivation
boredom >

Carnegie
Mellon
University

Cognitive Load

» ..." students who switch back and forth between attending to a
classroom lecture and checking e-mail, Facebook, and IMing with
friends”

Computers & Education 62 (2013) 24-31

lists ilabl

at SciVerse Sci Direct

Computers & Education

journal homepage: www.elsevier.com/locate/compedu

DESIGN ATED Laptop multitasking hinders classroom learning for both users and nearby peers

Faria Sana?, Tina Weston ®, Nicholas J. Cepeda ™
s M o Kl N G * McMaster University. Department of Psychology, Neuroscience, & Behaviour, 1280 Main Street West, Hamilton. ON L8S 4K1. Canada

® York University. Department of Psychology. 4700 Keele Street. Toronto, ON M3J 1P3, Canada
E “York University, LaMarsh Centre for Child and Youth Research, 4700 Keele Street, Toronto, ON M3] 1P3, Canada

ARTICLE INFO

ABSTRACT

N e e L A e e B M L i e e et e s e

53 Software and Societal

Systems Department

Carnegie
Mellon
Uniw

Can we remove human
error?

D Software and Societal C!al‘llt‘gie
Systems Department Mellon

University

catch
Can we remove human

error?

Can we catch human error before we ship our code?.
Can we automate tasks to prevent problems?

Carnegie

Software and Societal M 11165 ;
Systems Department el 0117 .
University

Biftinctio fexta Zractatug fecundus.
3 notarécirca alafigura § vacito pofta B tu poditi numer{ S lalinea

f,’..a«c comenga da. .cgnlllu hﬂ 2.1 0. ICENAD CO111:2:3:4.516:7:8.941 e.\'dnixm

fccondo fpacro al numero ocl paimo referwat baucratl la paima fpecie vela prg.
10 iplici cf a.cfe al paimo referivaiel numero ol teigo fpacio by -
yailafeconda fpecic e La multiplici cioe tripla.£ cofi fequendo in eutse e altrerighe nefog
go ¢l fimile troucrat.galcalnmero el fecondo fpaco el numero el terso 1Pacio copy
rai cioc.3.a.2.baueratla paimafpecic ¢ la propoztionc fnperparticulare dot fexqualicrg
W ——TT—‘S'TT[',T'{ £ feal rer¢oel quarto 10¢.4.8.3fexquitertia £ fe al quareo lo quito cioe.5.2.4.Sexqu
4= ’f 4billefs s ~h—{ quartaccofiin lalore fequiida (e al numero Dl rergo fpacio compererai el NUMero vel gy
I"', o] 8fiofi2[14]' [18] 201 o fpacio cioe.s.a.3baueraila paima fpecic oe L3 propozrione fuperpardente cioe fuperty
|6 [19[12[15]18]21 [24{27| 39| particns fertias. £ fe alnumerodel quarto fpau.q ¢l numero oel feprimo referivai cig
8 },2 16]20)24]28[52[36[40 7a.4.baueratla feconda fpecic oc la poportione fnp(rpﬁmc_(ccwc (\\Pmn\garm au
fz’h—)‘ 2c[25[30[35]49 12 128, fealnumero ocl quinto ¢l niio dELNoMo cee noue a.5 faraf larerca fpegie oela fug

e partite cioc fuper quadripartics quine

T as.£ e al numero o¢l fecondo el numero velg
of36[42(45[54/%0 | {5 cioc.s.a.2.faratla pauma fpecic vcla propo

12(18[24/3 atione nmlriplic fuperparticulare ooy
Tai21|28/35/42/49]56]63 [7° | felquialtera.£ fea quel medelimoc feprimo cioc.7.a:2.Lripla fequiatrera.Jfa feal ny
14 7:[36[4_81',5_“ 64]72|80 | rooel teréo fi compara cl numero oe loctauo cioe.3,2.3 fira lapaima fpecie oc 14 piopo
3l7[36 45[54/63 72 81(90 | NE mulaplici fuperparticeecioe oupla fuperbipartés ereias £ cofiporrai prepiuoy
i = o% —f= }g = "[lw— cedere felatauola fira magioze.£ feal quarto fundecmo quando i foffe fareitt lalt
tef30[4¢ffof6o|70[80]50[190| fecie pertavupla fupertri partiés quartas doe.1 1 quando piu olma volefie p2oceden
£ coli commo babiamo oeteo ve linnmeri pofti nelapaima riga fecondolt medefin
gbi comparado ancora le lince inferiozt quellemedefime fpecic [Eoaranno cbe fin
1a paima bai bauure.epero i per e fequirai.zC. ’
Teltermino elgual fe uia in venominare molie fpecic D¢ proportioni i
qui non impozraalero(a e paatico)ftnd a piut comodamere proferire
cic tronaroEe et Cve fup2adc mul [cando (NEGros NUITLTOs Viximi
==1) dam (yllabica adicctio, S5 1 como vicemo oel via ¢ ol fia chefufanoat v
carc2¢.Apa cl fubcba canfare lefpecie © fa menoze inegalie fipacpone aquelle!
gioze inequalita £(t mera ppofitioc cofi li fuper in pin fpecie interpoftodd no mi
e proportionalitatibiis ra.2” fexte viftin.artLp”.
r====— #ucndoabaitancaoc lepzopoztioni parlato e quelleoiuife finealel

Carnegie

33 Software and Societal
Mellon

Systems Department
Universis

Approach:
Automate what we can
Review what we cannot

CI/CD Pipeline overview

Tests Run J

SR SR

Code MergedJ

Continuous Integration:

Catch mistakes before you push your code!

3 n
Software and Societal C:‘dl negie
Systems Department Mellon

University

History of CI

:;1_;_; (1999) Extreme Programming (XP) rule: “Integrate Often”
1 (2000) Martin Fowler posts “Continuous Integration” blog
Cenisecorvel (2001) First Cl tool
@Jenkins (2005) Hudson/Jenkins
& Travis I (2011) Travis C|

%2 (2019) GitHub Actions

hl = L
Software and Societal](;A[dlﬁlt‘glt‘
Systems Department '1e1101

University

Example CI/CD Pipeline

= \

\‘*J J
CODE
. <[>
‘ COMMIT % . QQ REVIEW STAGING PRODUCTION
@ o— 000 =] { @
BUILD UNIT INTEGRATION
TE TESTS
& CD PIPELINE
CI PIPELINE
RELATED CODE

Carnegie

Software and Societal
3 D Systems Department l\[ellon
University

Developers say:

Cl helps us catch bugs earlier
Cl makes us less worried about breaking our builds

Cl lets us spend less time debugging

“[CI] does have a pretty big impact on [catching bugs]. It allows us to find issues
even before they get into our main repo, ... rather than letting bugs go
unnoticed, for months, and letting users catch them.”

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

Developers report:

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

M Higher Similar Lower
0% 25% 50% 75% 100%

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

Developers report:

Do developers on projects with Cl give (more/similar/less) value to

automated tests?
Do projects with CI have (higher/similar/lower) test quality?

M Higher Similar Lower
0% 25% 50% 75% 100%

Carnegie

Software and Societal y -
S3 Mellon

Systems Department : .
University

Developers report:

Do developers on projects with Cl give (more/similar/less) value to

automated tests?
Do projects with Cl have (higher/similar/lower) test quality?
Do projects with Cl have (higher/similar/lower) code quality?

B Higher Similar Lower
0% 25% 50% 75% 100%

Carnegie

Software and Societal y -
S3 Mellon

Systems Department : .
University

Developers report:

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

Do projects with Cl have (higher/similar/lower) test quality?

Do projects with CI have (higher/similar/lower) code quality?

Are developers on projects with Cl (more/similar/less) productive?

[| Higher Similar Lower
0% 25% 50% 75% 100%

Carnegie

Mellon

Software and Societal
Systems Department

University

Observation

Cl helps us catch errors
before others see them

Cl can run static and dynamic analysis

J ¢ Require approval from specific reviewers before merging Add rule «
Rulesets ensure specific people approve pull requests before they're merged.
All checks have passed Hide all checks
11 successful checks
v Homework 1 Check / Homework 1 (ubuntu-latest, 16) (pull_request) Successfulin 1m Details
7 Lint / Lint (ubuntu-latest, 16) (pull_request) Successful in 3m Details
v (@) Test/ Test (ubuntu-latest, 16, mongo-dev) (pull_request) Successfulin 6m Details
v Q Test [Test (ubuntu-latest, 16, mongo) (pull_request) Successful in 5m Details
v Test [Test (ubuntu-latest, 16, redis) (pull_request) Successfulin 5m Details
o Test | Test (ubuntu-latest, 16, postgres) (pull_request) Successful in 6m Details
This branch has no conflicts with the base branch
Merging can be performed automatically.
Merge pull request - You can also open this in GitHub Desktop or view command line instructions.

Al = L
33 Software and Societal Car negie

Systems Department l\"‘le!loﬁ :
/ . University

Static Validation

» Style guides
« Compiler warnings and errors
» Static analysis

» FindBugs

* clang-tidy

» Pylons Webtest

e Code review

Carnegie

Mellon

Software and Societal
Systems Department

University

https://findbugs.sourceforge.net/
https://findbugs.sourceforge.net/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/

Style Guide

» List of environment-specific preferred practices

e Could include:
e Libraries / idioms to use
* Formatting

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

Style Guide Examples

* https://www.python.org/dev/peps/pep-0008/

» https://github.com/airbnb/javascript

« https://subversion.apache.org/docs/community-
guide/conventions.html

« https://google.github.io/styleguide/cppguide.htm|
* https://google.github.io/styleguide/pyguide.html

* Linux kernel style guide

Carnegie

Software and Societal y -
S3 Mellon

Systems Department : .
University

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://subversion.apache.org/docs/community-guide/conventions.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Who writes these style guides?

Softwar
S3D Jeens sepertme

Who writes these style guides?

(ad hoc T &) Self-proclaimed code protectors

(wisdom) Team veteran developers

(copy-paste) Google search for blog posts by experts
(empirical study) Evidence-based analysis of code styles that

correlate with bugs

Software and Soc t | Carnegie
Ssl) Systems D epar tm Mellon

University

For problems we can’t
easily automate, we can
perform code review

Boeing Model 299 test on October 30,
1935.

* Plane crashed because of
locked elevator control
surface (opposite effect of
MCAS)

* 4 engines were deemed
“too complex”

» Test pilots developed
checklists to help them fly

Carnegie

Software and Societal =
S3 Mellon

Systems Department : .
University

Checklists help manage complex processes

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

hl = L
Software and Societal l(;jldlﬁlt‘-gle
Systems Department '1e1101

University

The Pronovost
Checklist

Central venous catheters, or
lines, are used for medications,
r. e e r ro n ov O S blood, fluids or nutrition and

can stay in for days or weeks.
But bacteria can grow in the
line and spread a type of infec-
tion to the bloodstream, which
causes death in one out five
patients who contract it. This
five-step checklist for doctors
and nurses to use before
inserting a line can prevent
infections and death.

1. Wash hands with soap and
water or an alcohol cleanser

2. Wear sterile clothing—

a mask, gloves, and hair
covering—and cover patient
with a sterile drape, except for
a very small hole where the
line goes in

3.Clean patient’s skin with
chlorhexidine (a type of soap)
when the lineis put in

4. Avoid veins in arm and leg,
which are more likely to get
infected than veins in chest

5. Check the line for infection
each day and remove when no
longer needed

https://www.wsj.com/articles/SB10001424052748704364004576131963185893084

Software and Societal %‘dl‘llt‘_g‘lt‘
Systems Department Mellon

* Inspired by B-17 Story

» After checklist, ten-day line-
infection rate went from eleven
per cent to zero

* In 15 months, only two line
infections occurred

* For one hospital, the checklist
had prevented forty-three
infections and eight deaths,
and saved $S2M

University

Difference between Pilot
and Doctor error?

Which is Developer error more like?

How to create a checklist?

« Start with problems we have seen before
» “Safety regulations are written in blood”

» Justify why this is not automatable

 Not all checklist items need to be very specific
* An item could be “does this team know we are proposing this change”

RUA L
Software and Societal (jdl negie
Systems Department Mellon

University

Activity: Create a checklist

e In pairs, think about dumb mistakes your “friend” made the
last time they were coding.
« Write your names on a piece of paper.

» Write down two checklist items that would have caught those
errors.

* Divide into teams: left and right sides of the classroom.

* Which team had the most unique/good entries in their list?

Carnegie

Software and Societal
Systems Department

Mellon

University

Expectations and
Outcomes for code review

Motivation

* Linus's Law: “Given enough eyeballs, all bugs are shallow.”
* - The Cathedral and the Bazaar, Eric Raymond

\
3oj Relative cost to fix bugs,
based on time of detection
25x
20x
15x
10x
5x
0x
quuin:ements / Coding Integration /) AE(‘:/:;::\:: 3 Production /
rchitecture Component Testing Testing Post-release

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

Code Review at Microsoft

Ranked Motivations From Developers
I Top [Second [] Third

Finding Defects

Code Improvement
Alternative Solutions
Knowledge Transfer
Team Awareness
Improve Dev Process
Avoid Build Breaks
Share Code Ownership
Track Rationale

Team Assessment

ﬂamﬂgm

o -
~n
8_.

400

D
o
o

Responses

Bacchelli, Alberto and Christian Bird. "Expectations, outcomes, and challenges of modern code review."
Proceedings of the 2013 Intemational Conference on Software Engineering. IEEE Press, 2013.

Systems Department Mellon
University

Al = L
33 Software and Societal Car negie

Outcomes (Analyzing Reviews)

Code Improvements
Understanding

Social Communication
Defects

External Impact
Testing

Review Tool
Knowledge Transfer
Misc

I

0% 10% 20% 30%

Software and Societal (:al‘llt‘glt‘
Systems Department Mellon

University

Mismatch of Expectations and Outcomes

 Low quality of code reviews
» Reviewers look for easy errors, as formatting issues
 Miss serious errors

» Understanding is the main challenge
« Understanding the reason for a change
» Understanding the code and its context
« Feedback channels to ask questions often needed

» No quality assurance on the outcome

Carnegie

Software and Societal -
S3 Mellon

Systems Department : .
University

Code Review at Google

* Introduced to “force developers to write code that other
developers could understand”

* Three benefits:
 checking the consistency of style and design
« ensuring adequate tests

* improving security by making sure no single developer could commit
arbitrary code without oversight

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code Review:
A Case Study at Google. International Conference on Software Engineering

Carnegie

Software and Societal ; 5
Systems Department Mellon

University

Reviewing Relationships

Project lead

Education
Maintaining
Maintaining norms
ili norms Gatekeepin
Readability D ev elo er PG ~iher
reviewers P teame
Education P - -
Maintaining ' ucation
norms Accident prevention
New team Other team
members members

Al = L
33 Software and Societal Car negie

Systems Department Mellon
Uniw

The State of Code Review survey

What do you believe are the most important benefits of code review?
0% 10% 20% 30% 404 50% 60% 70% HB0% 90%
Improved Software Quality
Sharing Knawledge Across the Team
Adherence to Coding Standards/Conventions
Ability to Mentor Less-Experienced Developers
Increased Collaboration

Reduced Project Time/Costs

Ability to Comply with Regulatory Standards 31%

Internal Audits 2B%
Ability to Set Expectations 28%

Enhanced Customer Satisfaction/Retention 26%

Enhanced Mobility of Code 26%

Strengthen Competitive Advantage 20%
150/Industry Certifications 16%
n=1129

Al = L
Software and Societal (jdl negie
Systems Department Mellon

University

Code Review

« Start with the “big ideas”

« Automate the little things

 Focus on understanding

« Remember a person wrote the code

« Don't overwhelm the person with feedback

Carnegie

Software and Societal =
S3 Mellon

Systems Department : .
University

Don’t forget that coders are people with feelings

e A coder’s self-worth is in their artifacts
e Cl can avoid embarrassment

- [dentify defects, not alternatives; do not criticize coder
* “you didn't initialize variable a” -> “| don’t see where variable a is initialized”

» Avoid defending code; avoid discussions of solutions/alternatives
« Reviewers should not “show off” that they are better/smarter

- Avoid style discussions if there are no guidelines

» The coder gets to decide how to resolve fault

hl = L
Software and Societal l(\;/[alﬁlegle
Systems Department elion

University

Risk Analysis:

* Probability a human makes a mistake: Very Likely
« Severity: ranges, but could be extensive

Severity |

[aterve

Solution:

Use Cl to catch your mistakes, make you
look better, and mitigate your risks! -

Use Code review to teach and learn

3 n
Software and Societal (mell negie
Systems Department Mellon

University

	Slide 1: Build Software Safely!
	Slide 2: Learning Goals
	Slide 3: Administrivia
	Slide 4: Smoking Section
	Slide 5: Risk
	Slide 6: Risk
	Slide 7: Definition: Risk
	Slide 8: Risk is defined by two key components
	Slide 9: Internal vs. External Risk
	Slide 10: Levels of Risk Management
	Slide 11: Levels of Risk Management
	Slide 12: Risk Management
	Slide 13: Team Exercise: Risk Identification
	Slide 14: Risk assessment matrix
	Slide 15: Aviation failure impact categories
	Slide 16: Risk Analysis
	Slide 17: Exercise: Risk Analysis
	Slide 18: Risk Prioritization Focus on risks with the highest exposure
	Slide 19: Risk Control
	Slide 20: DECIDE Model
	Slide 21: Discussion: Risk Elimination and Mitigation
	Slide 22: The Swiss cheese model
	Slide 23: OODA Loop
	Slide 24: No matter what you do
	Slide 25: Pre-mortems
	Slide 26: Why do we make misakes?
	Slide 27: Generalization
	Slide 28
	Slide 29: Cognitive Load
	Slide 30: Can we remove human error?
	Slide 31: Can we remove human error?
	Slide 32
	Slide 33: Approach: Automate what we can Review what we cannot
	Slide 34: CI/CD Pipeline overview
	Slide 35: Continuous Integration:
	Slide 36: History of CI
	Slide 38: Example CI/CD Pipeline
	Slide 40: Developers say:
	Slide 41: Developers report:
	Slide 42: Developers report:
	Slide 43: Developers report:
	Slide 44: Developers report:
	Slide 45: Observation
	Slide 46: CI can run static and dynamic analysis
	Slide 47: Static Validation
	Slide 48: Style Guide
	Slide 49: Style Guide Examples
	Slide 50: Who writes these style guides?
	Slide 51: Who writes these style guides?
	Slide 52: For problems we can’t easily automate, we can perform code review
	Slide 53: Boeing Model 299 test on October 30, 1935.
	Slide 54: Checklists help manage complex processes
	Slide 55: Dr. Peter Pronovost
	Slide 56: Difference between Pilot and Doctor error?
	Slide 57: How to create a checklist?
	Slide 58: Activity: Create a checklist
	Slide 59: Expectations and Outcomes for code review
	Slide 60: Motivation
	Slide 61: Code Review at Microsoft
	Slide 62: Outcomes (Analyzing Reviews)
	Slide 63: Mismatch of Expectations and Outcomes
	Slide 64: Code Review at Google
	Slide 65: Reviewing Relationships
	Slide 66: The State of Code Review survey
	Slide 67: Code Review
	Slide 68: Don’t forget that coders are people with feelings
	Slide 69: Risk Analysis:

