

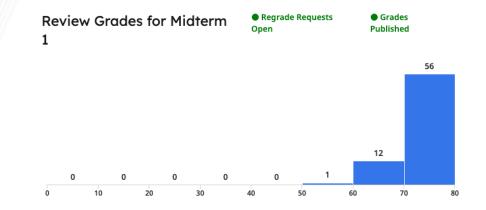
SE for ML 17-313 Spring 2023

Administrivia

• Project 3 Released

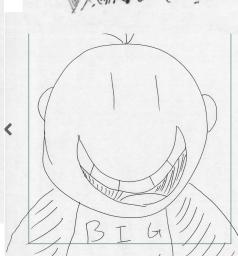
We have pushed back the checkpoint deadline for Project 3 from this Thursday to this Friday, given that fly.io has experienced two outages (which is atypical for fly.io) in the week that we release the project.

- We do not typically adjust deadlines and/or give extensions for projects in this class, as planning and delivering on deadlines is part of the learning objectives of this class, but we understand the outages are not within students' control.
- Midterm is graded

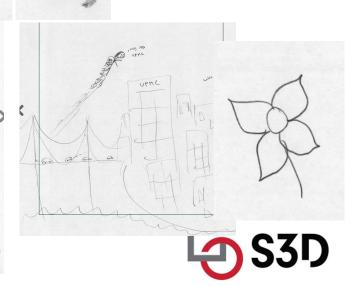


me when trying to navigate a large codebase.

SAC



G



Retrospectives

- "the purpose of the Sprint Retrospective is to plan ways to increase quality and effectiveness." –Scrum.org
- We often use three questions:
- What should we:
 - Start doing?
 - Stop doing?
 - Keep doing?

Learning goals

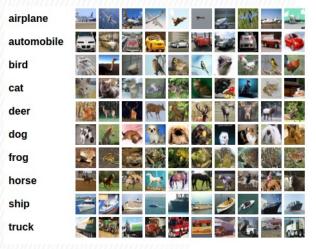
- Identify differences between traditional software development and development of ML systems.
- Understand the stages that comprise the typical ML development pipeline.
- Identify challenges that must be faced within each stage of the typical ML development pipeline.

Quick poll: Have you taken a machine learning course before?

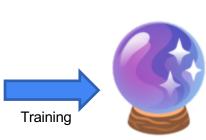
Source: https://xkcd.com/1425/

Machine Learning in One Slide

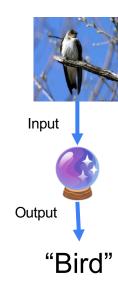
(Supervised)

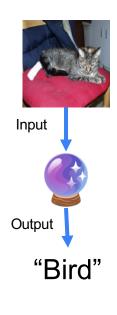


Lots of labelled data (Inputs, outputs)



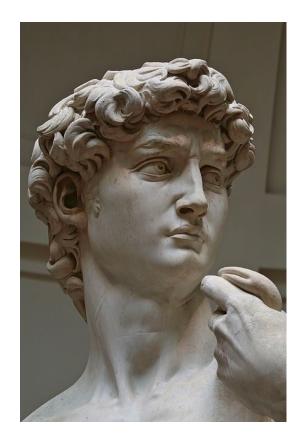
Model





Traditional Software Development

"It is easy. You just chip away the stone that doesn't look like David." –(probably not) Michelangelo



ML Development

- Observation
- Hypothesis
- Predict
- Test
- Reject or Refine Hypothesis

Black-box View of Machine Learning

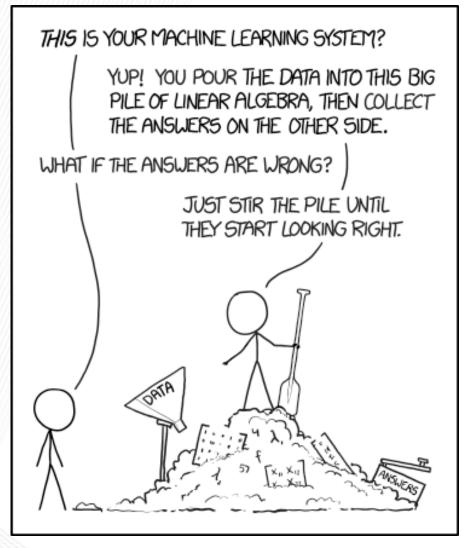
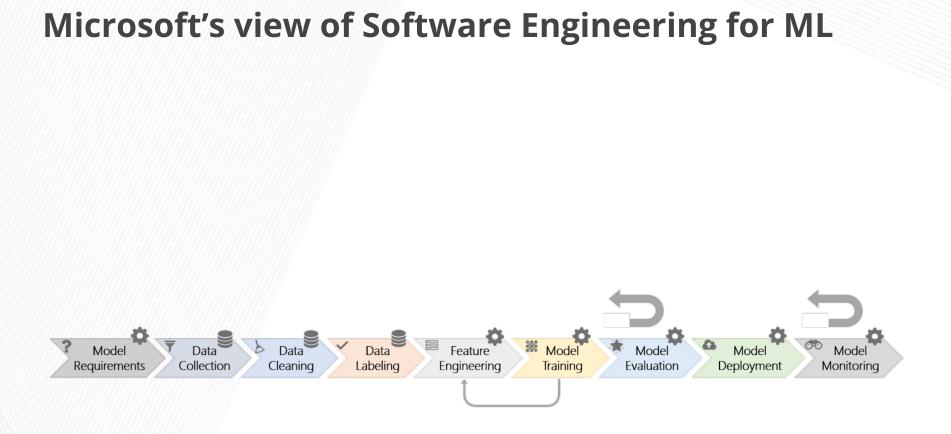


Image: https://xkcd.com/1838/



Source: "Software Engineering for Machine Learning: A Case Study" by Amershi et al. ICSE

Three Fundamental Differences:

- Data discovery and management
- Customization and Reuse
- No modular development of model itself

Case Study

- Case study developed by
- Christian Kästner
- https://ckaestne.github.io/seai/

Machine Learning in Production / AI Engineering (17-445/17-645/17-745/11-695)

*Formerly **Software Engineering for AI-Enabled Systems (SE4AI)**, CMU course that covers how to build, deploy, assure, and maintain applications with machine-learned models. Covers **responsible AI** (safety, security, fairness, explainability, ...) and **MLOps**.*

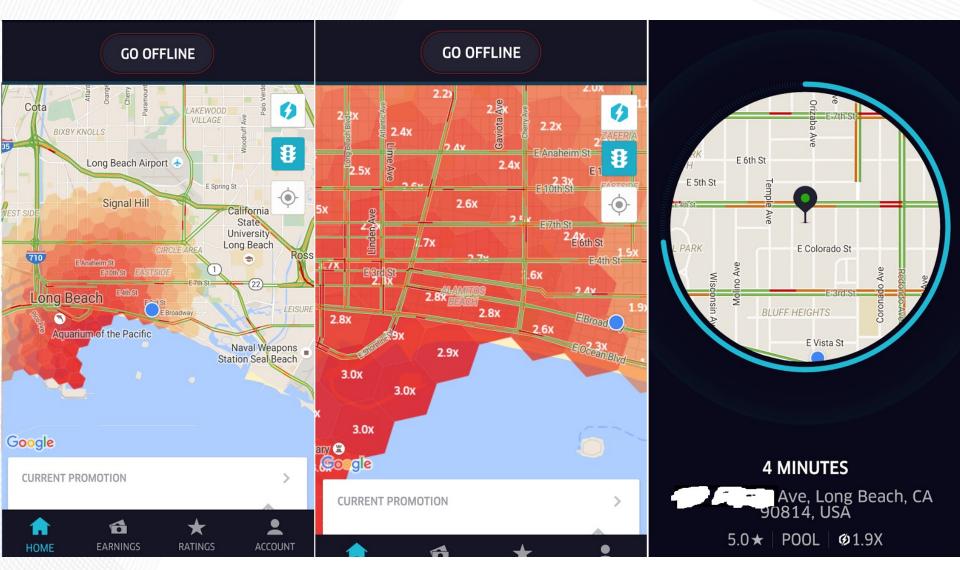
Holistic system view: Al and	non-Al components, pip	elines, stakeholders, enviror	nment interacti	ons, feedbac	k loops	
Requirements: System and model goals User requirements Environment assumptions Quality beyond accuracy Measurement Risk analysis Planning for mistakes	Architecture + desi Modeling tradeoffs Deployment architec Data science pipelin Telemetry, monitorin Anticipating evolutio Big data processing Human-Al design	Model testing ture Data quality es QA automation g Testing in proc	Data quality QA automation Testing in production Infrastructure quality		Operations: Continuous deploymen Contin_experimentation Configuration mgmt. Monitoring Versioning Big data DevOps, MLOps	
Teams and process: Data so		orkflows, interdisciplinary te	ams, collabora	ition points, t	echnical debt	
Provenance, versioning, reproducibility	Security an privacy	d Fairness	Interpreta and expla		Fransparency and trust	

The Next Generation of Spectacles

Qualities of Interest?

А

В



Typical ML Pipeline

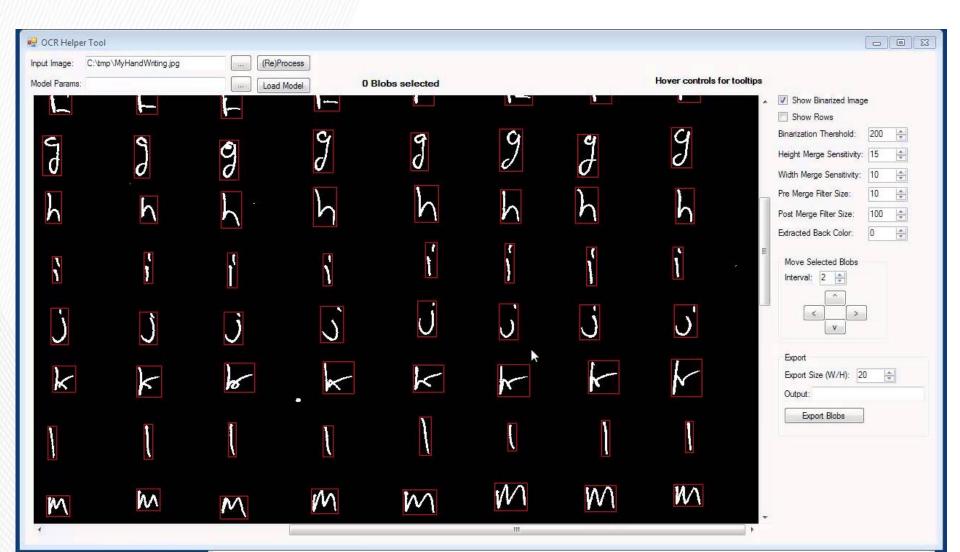
• Static

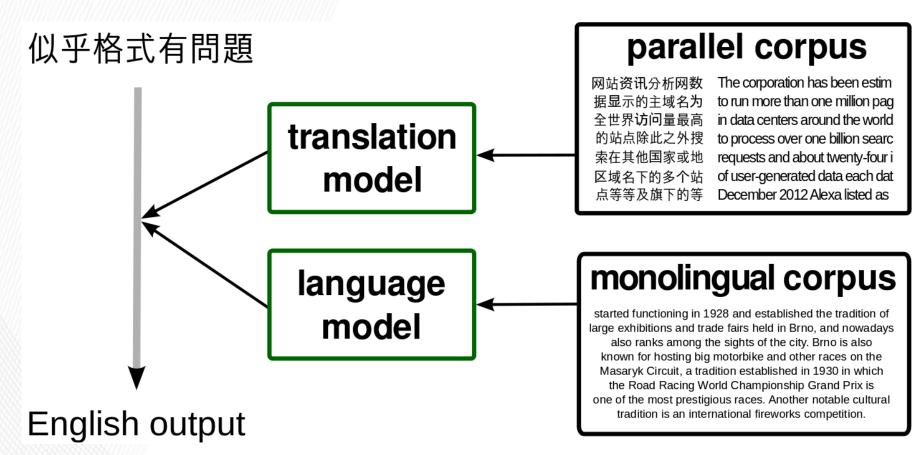
- Get labeled data (data collection, cleaning and, labeling)
- Identify and extract features (feature engineering)
- Split data into training and evaluation set
- Learn model from training data (model training)
- Evaluate model on evaluation data (model evaluation)
- Repeat, revising features
- with production data
 - Evaluate model on production data; monitor (model monitoring)
 - Select production data for retraining (model training + evaluation)

Model Data Data Data Data Explorer Model Feature Model Engineering Training Evaluation

Update model regularly (model deployment)

Example Data





Example Data

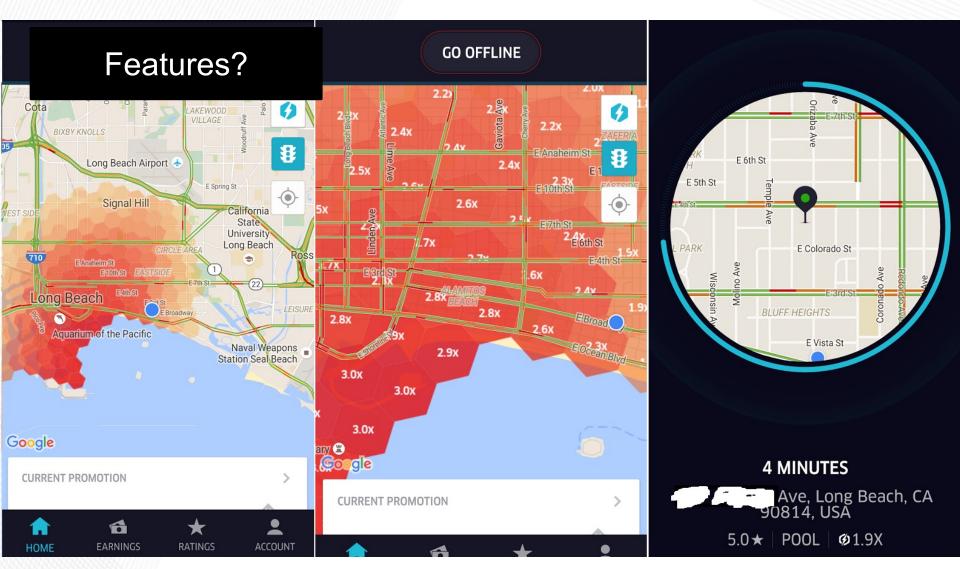
Userld	PickupLocation	TargetLocation	OrderTime	PickupTime
5			18:23	18:31

Feature Engineering

- Identify parameters of interest that a model may learn on
- Convert data into a useful form
- Normalize data
- Include context
- Remove misleading things

Feature Extraction

- In OCR/translation:
 - Bounding boxes for text of interest
 - Character boundaries
 - Line segments for each character
 - GPS location of phone (to determine likely source language)



Feature Extraction

- In surge prediction:
 - Location and time of past surges
 - Events
 - Number of people traveling to an area
 - Typical demand curves in an area
 - Demand in other areas
 - Weather

Data Cleaning

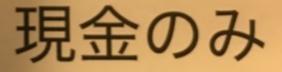
- Removing outliers
- Normalizing data
- Missing values

Learning

• Build a predictor that best describes an outcome for the observed features

Evaluation

- Prediction accuracy on learned data vs
- Prediction accuracy on unseen data
 - Separate learning set, not used for training
- For binary predictors: false positives vs. false negatives, precision vs. recall
- For numeric predictors: average (relative) distance between real and predicted value
- For ranking predictors: top-K, etc.



0

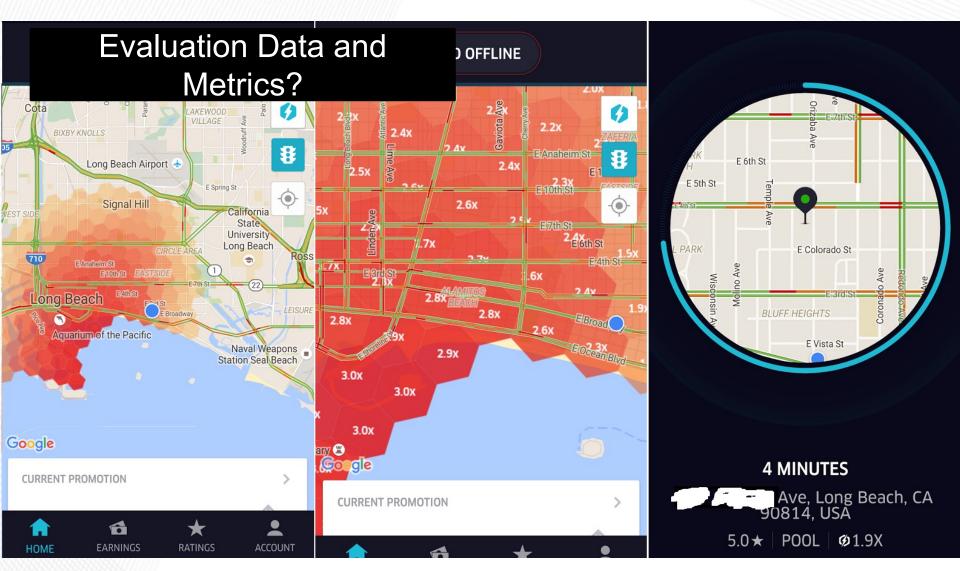
⊲

Japanese 🚅 English

٥

cash only

۲



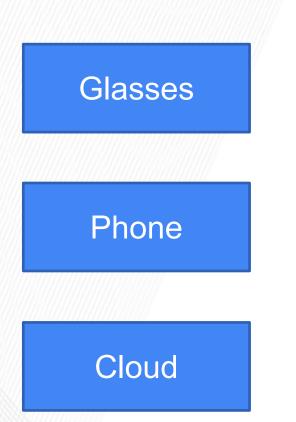
Learning and Evaluating in Production

- Beyond static data sets, **build telemetry**
- Design challenge: identify mistakes in practice
- Use sample of live data for evaluation
- Retrain models with sampled live data regularly
- Monitor performance and intervene

ML Model Tradeoffs

- Accuracy
- Capabilities (e.g. classification, recommendation, clustering...)
- Amount of training data needed
- Inference latency
- Learning latency; incremental learning?
- Model size
- Explainable? Robust?

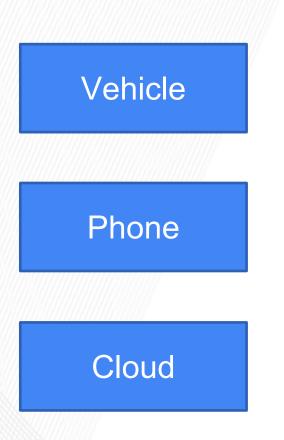
Where should the model live?



OCR Component

Translation Component

Where should the model live?



Surge Prediction

Considerations

- How much data is needed as input for the model?
- How much output data is produced by the model?
- How fast/energy consuming is model execution?
- What latency is needed for the application?
- How big is the model? How often does it need to be updated?
- Cost of operating the model? (distribution + execution)
- Opportunities for telemetry?
- What happens if users are offline?

Typical Designs

- Static intelligence in the product
 - difficult to update
 - good execution latency
 - cheap operation
 - offline operation
 - no telemetry to evaluate and improve
- Client-side intelligence
 - updates costly/slow, out of sync problems
 - complexity in clients
 - offline operation, low execution latency

Typical Designs

- Server-centric intelligence
 - latency in model execution (remote calls)
 - easy to update and experiment
 - operation cost
 - no offline operation
- Back-end cached intelligence
 - precomputed common results
 - fast execution, partial offline
 - saves bandwidth, complicated updates
- Hybrid models

Other Considerations

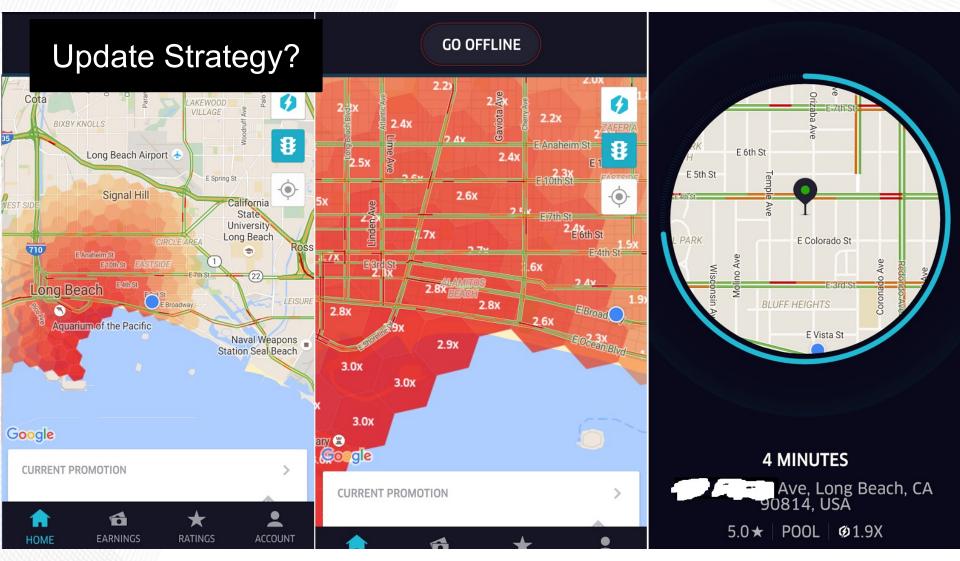
- Coupling of ML pipeline parts
- Coupling with other parts of the system
- Ability for different developers and analysists to collaborate
- Support online experiments
- Ability to monitor

Reactive Systems

- Responsive
 - consistent, high performance
- Resilient
 - maintain responsive in the face of failure, recovery, rollback
- Elastic
 - scale with varying loads

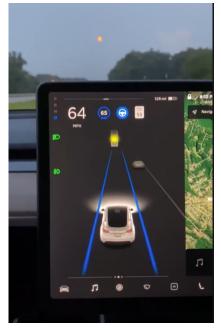
Updating Models

- Models are rarely static outside the lab
- Data drift, feedback loops, new features, new requirements
- When and how to update models?
- How to version? How to avoid mistakes?



Mistakes will happen

- No specification
- ML components detect patterns from data (real and spurious)
- Predictions are often accurate, but mistakes always possible
- Mistakes are not predicable or explainable or similar to human mistakes
- Plan for mistakes
- Telemetry to learn about mistakes?



How Models can Break

- System outage
- Model outage
 - model tested? deployment and updates reliable? file corrupt?
- Model errors
- Model degradation
 - data drift, feedback loops

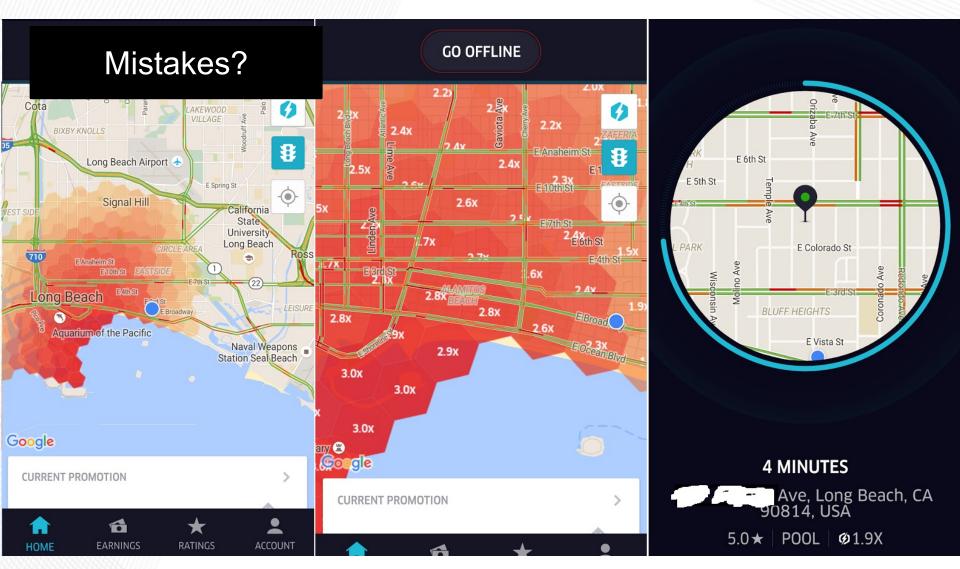
Hazard Analysis

- Worst thing that can happen?
- Backup strategy? Undoable? Nontechnical compensation?

Mitigating Mistakes

- Investigating in ML
 - e.g., more training data, better data, better features, better engineers
- Less forceful experience
 - e.g., prompt rather than automate decisions, turn off
- Adjust learning parameters
 - e.g., more frequent updates, manual adjustments
- Guardrails
 - e.g., heuristics and constraints on outputs
- Override errors
 - e.g., hardcode specific results





Telemetry

• Purpose:

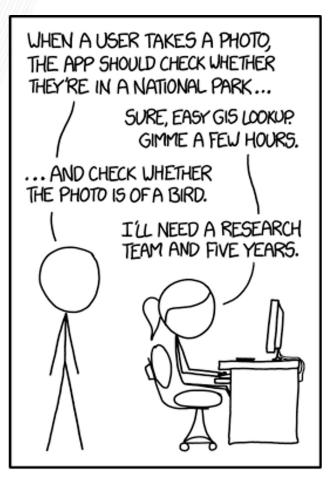
- monitor operation
- monitor success (accuracy)
- improve models over time (e.g., detect new features)

Challenges:

- too much data sample, summarization, adjustable
- hard to measure intended outcome not observable? proxies?
- rare events important but hard to capture
- cost significant investment must show benefit
- privacy abstracting data

Requirements and estimation

• Talking to stakeholders



Source: https://xkcd.com/1425

Summary

- Machine learning in production systems is challenging
- Many tradeoffs in selecting ML components and in integrating them in larger system
- Plan for updates
- Manage mistakes, plan for telemetry

