
Architecture:
Design Docs

17-313 Fall 2023

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Eduardo Feo Flushing

https://cmu-313.github.io/

Administrivia

• Teamwork assessments due every Friday.

• Happy Lunar New Year!

• Happy Super Bowl Weekend!

Learning Goals

• Articulate the various purposes of a design document.

• Use design documentation to ensure that the correct thing is
being implemented.

• Write useful, clear, high-quality design documentation.

Smoking Section

• Last two full rows

4

5

Source: Pittsburgh Zoning Map
(https://gis.pittsburghpa.gov/pghzoning/)

https://www.instagram.com/architectanddesign

h
tt

p
s:

//
w

w
w

.a
rc

hd
ai

ly
.c

o
m

/

https://www.mykonosceramica.com/

w
w

w
.o

ver-view
.co

m

Guidelines for selecting a notation

● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or
processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

• Each view of architecture should fit on a page
• Use hierarchy

Example:

 VS

Types of documentation

• Reference documentation (incl. code comments)

• Design documents

• Tutorials

• Conceptual documentation

• Landing pages

Design documents

• Code review before there is code!

• Collaborative (Google Docs)

• Ensure various concerns are covered, such
as: security implications, internationalization,
storage requirements, and privacy concerns.

• A good design doc should cover
● Goals and use cases for the design

● Implementation ideas (not too specific!)

● Propose key design decisions with an emphasis
on their individual tradeoffs

Design Documents

• The best design docs suggest design
goals, and cover alternative designs,
documenting the strengths and
weaknesses of each.

• The worst design docs accidentally
embed ambiguities, which cause
implementors to develop
contradictory solutions that the
customer doesn’t want.

Why is this important?

Lots of evidence this is hard

Common parts/templates

1. Metadata: version, date,
authors

2. Executive Summary:
problem being solved,
project mission

3. Stakeholders
(and non-stakeholders)

4. Scenarios / User Stories

5. User Experience

1. High-level Requirements:
Functional
• Global Requirements: Quality,

Security, Privacy, Ethics

2. Features and Operations

3. Design Considerations and
Tradeoffs

4. Non-Goals

5. Roadmap / Timeline

6. Open Issues

Examples: SourceGraph
RFCs
Requests for Comment

https://about.sourcegraph.com/handbook/communication/rfcs

When to use an RFC:

• You want to frame a problem and propose a solution.

• You want thoughtful feedback from team members on our
globally-distributed remote team.

• You want to surface an idea, tension, or feedback.

• You want to define a project or design brief to drive project
collaboration.

• You need to surface and communicate around a highly cross-
functional decision with our formal decision-making process.

https://handbook.sourcegraph.com/company-info-and-process/communication/rfcs/

Don’t use an RFC when

• You want to discuss personal or sensitive topics one-on-one
with another team member.

• You want to make a decision to change something where
you are the decider. In the vast majority of cases, creating an
RFC to explain yourself will be overkill. RFCs should only be
used if a decision explicitly requires one of the bullets in the
previous page.

RFC Labels

• WIP: The author is still drafting the RFC and it’s not ready for review.

• Review: The Review label is used when the RFC is ready for comments and feedback.

• Approved: When the RFC is for the purpose of making a decision, the Approved label indicates
that the decision has been made.

• Implemented: When the RFC is for the purpose of making a decision, the Implemented label
indicates that the RFC’s proposal has been implemented.

• Closed: When the RFC is for the purpose of collaboration or discussion but not necessarily to
make a decision or propose a specific outcome that will eventually become Implemented, the
Closed label indicates that the RFC is no longer an active collaborative artifact.

• Abandoned: When the RFC is for the purpose of making a decision, and there are no plans to
move forward with the RFC’s proposal, the Abandoned label indicates that the RFC has been
purposefully set aside.

Observe Sourcegraph Design Docs

• Docs are publicly available
https://drive.google.com/drive/folders/1zP3FxdDlcSQGC1qvM9lHZRa
HH4I9Jwwa

• Let’s take a look at one!

https://drive.google.com/drive/folders/1zP3FxdDlcSQGC1qvM9lHZRaHH4I9Jwwa
https://drive.google.com/drive/folders/1zP3FxdDlcSQGC1qvM9lHZRaHH4I9Jwwa

Exercise

4 Proposed features:

• Add Payment Methods

• More Secure Authentication

• Add Android Support

• Internationalization (i18n)

Time to write our own design docs!

• Divide up into 4 teams.

• Your mission:
• Brainstorm a feature to add to a scooter app and write a design

spec, together!

• Review the design doc, collaborate around text

• Review another team's design doc, ask questions/leave comments

	Slide 1: Architecture: Design Docs
	Slide 2: Administrivia
	Slide 3: Learning Goals
	Slide 4: Smoking Section
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Guidelines for selecting a notation
	Slide 9: Example:
	Slide 10: Types of documentation
	Slide 11: Design documents
	Slide 12: Design Documents
	Slide 13
	Slide 14: Why is this important?
	Slide 15: Lots of evidence this is hard
	Slide 16: Common parts/templates
	Slide 17: Examples: SourceGraph RFCs
	Slide 18
	Slide 19: When to use an RFC:
	Slide 20: Don’t use an RFC when
	Slide 21: RFC Labels
	Slide 22: Observe Sourcegraph Design Docs
	Slide 23: Exercise
	Slide 24: Time to write our own design docs!

