
Architecture:
Microservices

17-313 Spring 2024
Foundations of Software Engineering

https://cmu-313.github.io
Michael Hilton and Eduardo Feo Flushing

https://cmu-313.github.io/

• Project 2B due tonight
• Next Sprint (2C) due Feb 29

• Teamwork assessments due every Friday
• Reminder: Midterm on February 27 in class

• We will release sample / practice exams for
recitation next week

Administrivia

Smoking Section

•Last two full rows

3

Learning Goals
• Contrast the monolithic application design with a modular

design based on microservices.
• Reason about tradeoffs of microservices architectures.
• Principles of microservices: how to benefit and avoid their

pitfalls

Outline

● From Monoliths to Service Oriented Architecture
• Case Study: Chrome Web Browser

● Microservices
• Monolith vs Microservices
• Advantages
• Challenges

● Microservices: Principles
● Serverless

Before we get to
microservices…

MONOLITHS

Monolithic styles

Source: https://www.seobility.net (CC BY-SA 4.0)

Monolithic styles: MVC Pattern (e.g., NodeBB)

SERVICE-BASED ARCHITECTURE
Separation of concerns

Chrome

Web Browsers

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser: A multi-threaded process

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-process browser with IPC

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser Architectures

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

https://webperf.tips/tip/browser-process-model/

Service Oriented Architecture

• Ability to change components independently
• Independent processes (Isolation, Security)
• Focusing on doing one thing well

MICROSERVICES

“Small autonomous services that work well
together”

 Sam Newman

Microservices

Netflix Microservices – App Boot

• Recommendations
• Trending Now
• Continue Watching
• My List
• Metrics

3
0

(as of 2016)

3
1

Service Description

frontend Exposes an HTTP server to serve the website. Does not require signup/login and generates session IDs
for all users automatically.

cartservice Stores the items in the user's shopping cart in Redis and retrieves it.

productcatalogservice Provides the list of products from a JSON file and ability to search products and get individual products.

currencyservice Converts one money amount to another currency. Uses real values fetched from European Central Bank.

paymentservice Charges the given credit card info (mock) with the given amount and returns a transaction ID.

shippingservice Gives shipping cost estimates based on the shopping cart. Ships items to the given address (mock)

checkoutservice Retrieves user cart, prepares order and orchestrates the payment, shipping and the email notification.

Activity: Mapping Interactions in a Microservices Architecture

https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/frontend
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/cartservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/productcatalogservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/currencyservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/paymentservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/shippingservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/checkoutservice

Monoliths vs Microservices

Activity: Discussion
What are the consequences of this architecture? On:
• Scalability
• Reliability
• Performance
• Development
• Maintainability
• Testability
• Ownership

Advantages of Microservices

• Better alignment with the organization
• Ship features faster and safer
• Scalability
• Target security concerns
• Allow the interplay of different systems and languages, no

commitment to a single technology stack
• Easily deployable and replicable
• Embrace uncertainty, automation, and faults

Microservice challenges

• Too many choices
• Delay between investment and payback
• Complexities of distributed systems

• network latency, faults, inconsistencies
• testing challenges

• Monitoring is more complex
• More system states
• More points of failure
• Operational complexity
• Frequently adopted by breaking down a

monolithic application

MICROSERVICES: PRINCIPLES

3
8

Sam Newman’s Principles of Microservices

Principles

Highly
Observable

3
9

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Highly
Observable

4
0

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First

Isolate Failures

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First

Isolate Failures

Highly
Observable

Principle 1: Domain-driven modeling

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

• Model services around
business capabilities

Principle 1: Domain-driven modeling

Principle 1: Domain-driven modeling

Principle 2: Culture of Automation

• API-Driven Machine Provisioning
• Continuous Delivery
• Automated Testing

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

API-Driven Machine Provisioning

Example: Infrastructure as code (IaC)

Image source: https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code

Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd

Continuous Delivery

Principle 3: Hide implementation details

• Design carefully your APIs
• It’s easier to expose some details

later than hide them
• Do not share your database!

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Principle 3: Hide implementation details

Recall: Encapsulation in OOP

Sharing database: Anti-pattern

Principle 4: Decentralized Governance

• Mind Conway’s Law
• You Build It, You Run It
• Embrace team autonomy
• Internal Open Source Model

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Mind Conway’s Law

Mind Conway’s Law

“Products” not “Projects”

Principle 5: Deploy Independently

• One Service Per OS
• Consumer-Driven Contracts
• Multiple coexisting versions

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

One Service Per OS

Consumer-Driven Contracts

Multiple coexisting versions

Principle 6: Consumer First

• Encourage conversations
• API Documentation
• Service Discovery

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Encourage conversations

API Documentation

Principle 7: Isolate Failure
• Avoid cascading failures
• Timeouts between components
• Fail fast aka Design for Failure

• Bulkheading / Circuit breakers

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Image source: blogs.halodoc.io

Closed circuit Open circuit

Principle 8: Highly Observable

• Standard Monitoring
• Health-Check Pages
• Log and Stats aggregation
• Downstream monitoring

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Principle 8: Highly Observable

• Standard Monitoring
• Health-Check Pages
• Log and Stats aggregation
• Downstream monitoring

7
1

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First

Isolate Failures

Highly
Observable

Are microservices always the right choice?

7
2

Microservices overhead

SERVERLESS
Taking it to the extreme

Taken to the extreme…
Serverless (Functions-as-a-Service)
• Instead of writing minimal services, write just functions
• No state, rely completely on cloud storage or other cloud
services

• Pay-per-invocation billing with elastic scalability
• Drawback: more ways things can fail, state is expensive
• Examples:
AWS lambda, CloudFlare workers, Azure Functions

• What might this be good for?

