QA: Dynamic Analysis
17-313 Spring 2024
Foundations of Software Engineering

https://cmu-313.github.io
Michael Hilton and Eduardo Feo Flushing

Carnegie
Soft and Soc t (<]
83D Syste twm Depar tm Mellon

Universi

https://cmu-313.github.io/

Administrivia

Teamwork:
« “Every member of the team must contribute to
the implementation”.
Evidence of contribution
e GitHub commits/PRs
Individual grade penalty may apply in case of
insufficient contribution
Contact course staff to request regrades

Smoking Section

el ast two full rows

DESIGNATED
SMOKING
AREA

Softwa
3 Systems Dep ttttttt

Learning Goals

Describe random test-input generation strategies such as
fuzz testing

Identify and discuss the key challenges associated with
performance testing in software development.
Understand the ideas behind chaos engineering and how
it is used to test resiliency of cloud-based applications
Describe A/B testing for usability

Recommend appropriate dynamic analysis techniques for
specific software quality issues.

Software and Societa g/[all'flegle
Systems Department elion

Universi

Automated Analysis for Functional and
Non-Functional Properties

« Correctness - Static Analysis and Testing
« Robustness - Fuzzing

« Performance - Profiling

 Scalability - Stress testing

« Resilience - Soak testing

« Reliability - Chaos Engineering

« Usability - A/B testing

Carnegie
Soft and Soc t (<]
SSD Syste twm Depar tm Mellon

Universi

Automated Analysis for Functional and
Non-Functional Properties

« Correctness - Static Analysis and Testing
« Robustness - Fuzzing

« Performance - Profiling

. Scalability - Stress testing

. Resilience - Soak testing

« Reliability - Chaos Engineering

« Usability - A/B testing

(Carnegie
Soft and Soc t (<]
SSD Syste th Depar tm Mellon

Universi

Outline

* Fuzz Testing
« Performance Testing and Debugging
« Testing in Production

 Reliability: Chaos Engineering

« GUI and Usability: A/B Testing

Carnegie
Soft and Soc t (<]
SSD Syste twm Depar tm Mellon

Universi

Security and Robustness

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the (14 On a
Reliubility o‘ dark and stormy night one of the
authors was logged on to his work-

T* L3 station on a dial-up line from home
and the rain had affected the

phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-

-] - -
utllltles acters were causing programs to
crash.

Communications of the ACM (1990)
How to identify these bugs?
Carnegie

Software and Societa Mell
Systems Department ellon
Universi

Infinite monkey theorem

“a monkey hitting keys at random on a typewriter keyboard for
an infinite amount of time will almost surely type any given text,
including the complete works of William Shakespeare. “

https://en.wikipedia.org/wiki/Infinite_monkey_theorem

Software and Societa g/[all'flegle
Systems Department elion

Universi

Fuzz Testing

0,
/dev/random m Program

S3

\

Software and Societa
Systems Department

A 1990 study found crashes in:

adb, as, bc, cb, col, diction, emacs, eqn, ftp,
indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, uniq,
vgrind, vi

Carnegie
Mellon
Universi

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting,
executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero,
use-after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Software and Societa g/[all'flegle
Systems Department elion

Universi

Mutation-Based Fuzzing (e.g. Radamsa)

Seeds

<foo></foo>

NdNJdOM
Mutation

Initiql

Software and Societa 1E]/[al'negle
Systems Department ellon

Universi

Coverage-Guided Fuzzing (e.g. AFL)

Seeds

<foo></foo>

Initiql

Program

Add

, Coverage
In put Instrumentation

Execution feedback

New branch ' — v
coverage? ; xs

Software and Societa g/[all';legle
Systems Department elion

University

Mutation Heuristics

= Binary input
« Bitflips, byte flips
» Change random bytes
» Insert random byte chunks
» Delete random byte chunks

Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1, ...
= Textinput
Insert random symbols relevant to format (e.g. “<” and “>" for xml)
Insert keywords from a dictionary (e.g. “<project>" for Maven POM.xml)
= GUIl input
» Change targets of clicks
» Change type of clicks
Select different buttons

Change text to be entered in forms
... Much harder to design

Software and Societa
Systems Department

Carnegie
Mellon

Universi

Fuzzing in practice
« Google uses ClusterFuzz to fuzz all Google products 00

« Supports multiple fuzzing strategies
« “As of February 2023, ClusterFuzz has found ~27,000 bugs 0

in Google (e.g. Chrome).”

Carnegie

Software and Societa Mell
Systems Department elion
Universi

Fuzzing in practice

After the OpenSSL Heartbleed vulnerability discovered in
2016, Google launched OSS-Fuzz
« Free service for open source projects
« “The project must have a significant user base and/or be
critical to the global IT infrastructure.”
« 0OSS-Fuzz privately alerts developers to the bugs detected.
« Supports Cl (e.g., triggered from GitHub actions)

Software and Societa g/[all'flegle
Systems Department elion

Universi

OSS-Fuzz: Free Fuzzing for Open Source

Software

— Upstream project
Yo

S 3. Sync and

build f .
o buildfrom g ilder

(Cloud Bui
google/oss-fuzz

s

2. Commit build configs

1. Write fuzzers

8. Fix bugs

Developer

“As of August 2023, OSS-Fuzz has helped identify and fix over

7. Notify

Id)
GCS bucket
5. Download

e and fuzz

6. File bugs,
Verify fixes

4. Upload

ClusterFuzz

P—1—1 Track deadlines

LRAl

Issue tracker (monorail)

Sheriffbot

10.000 vulnerabilities and 36,000 bugs across 1,000 projects.”

Some projects include: nodejs, django, mysql-server, redis-py, apache-httpd, openvpn, openssl

Software and Societa

Carnegie
Mellon

S3D

Systems Department

Universi

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug-Security%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://github.com/google/oss-fuzz/tree/master/projects

Activity:
Pick one scenario based on where you are seating
E-Commerce Web Application (front rows)

Automotive Software for Self-Driving Cars (middle rows)
Mobile Gaming Application (back rows)

Discuss in groups of 2-3 the applicability of fuzz testing in your
scenario, considering:

Types of inputs to fuzz.
Potential vulnerabilities or bugs fuzz testing might uncover.
Specific challenges in implementing fuzz testing for the scenario.

Bonus: How fuzz testing could be integrated into the development
cycle for that particular application?

Software and Societa g/[all'flegle
Systems Department elion

Universi

Performance Testing and
Debugging

Performance Testing

« Goal: Identify performance bugs. What are these?

. Unexpected bad performance on some subset of inputs
. Performance degradation over time
. Difference in performance across versions or platforms

« Not as easy as functional testing. What's the baseline?

. Fast = good, slow = bad // but what's the threshold?
- How to get reliable measurements?
.- How to debug where the issue lies?

Software and Societa g/[all'flegle
Systems Department elion

Universi

Performance regression testing helps
identify trends

« Measure execution time of critical components
« Log execution times and compare over time

Job 1296643840000

Issue 808613 Analyze benchmark results - 2.0 hours - 2/14/2018, 9:48:34 AM

Differences found after commits 490

Re-record loading.desktop story set by
ksakamoto@chromium.org

Job arguments

benchmark loading.desktop

chart cpuTimeToFirstMeaningfulPaint /4’\1
460 /l

configuration chromium-rel-mac11-pro

statistic avg

story Pantip

Re-record loading.desktop story set by ksakamoto@chromium.org
target telemetry_perf_tests

tir_label warm

Build Test Values
EEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEN

trace Pantip

builder Mac Builder task_id 3baeadbeaa7{1710 trace Pantip_2018-02-14_11-40-
630b5te7ae1b260678008823309 bot_id build197-b4 0793865 il
s le7ae e’ ot_i Uil -
Isolate_hash o 01 5640517b Pantip_2018-02-14_11-40-

{solata_hash 146e0B7de6d2504cc3a0ee0f351 trace > 51734.himl

8169fc3d0c2c3

Carnegie

Software and Societa M (<]
Systems Department e!lon _
Universi

Performance bugs are "bad” bugs

Discovering, Reporting, and Fixing
Performance Bugs

Adrian Nistor!, Tian Jiang?, and Lin Tan?
!"University of Illinois at Urbana-Champaign, >University of Waterloo
nistor] @illinois.edu, {t2jiang, lintan} @uwaterloo.ca

Fixing performance bugs is usually more difficult than fixing
non-performance bugs

. Performance bugs usually don't generate incorrect results or
crashes

Difficult to diagnose:
- system load, hardware configuration, network conditions,
user-specific workflows, interactions with other systems

Big impact on user experience

Software and Societa g/[all'flegle
Systems Department elion

Universi

A search query in Google Data Centers

| —// | !. : , A
i } _4/ H o £ !

hsa hﬁg hsdw o~ hsay hsbo ___ hsbp _QQ.‘;.. - —.'—'38—-————,——" [-
T = Sl cTny 8T oy
N\ - | A2 y 4
l\‘. AR ‘: e B \ ‘l ,' .// :
o TROF | IR BRI [P /[
| i | P b e+ i
P 3 . |
® Y A - B 12
| { = "xf;j | = i E,/ 2 u
L D0 L MDA BN RN, e ,..J/L e ad SWA
hadk hedp hade "“’{‘3 v ";“.": fise W v AP "?’”{' '?57" P840 3
aTEmnlws et slanies o viz b g lw = izaniy iy

Dick Sites - "Data Center Computers: Modern Challenges in CPU Design"

Software and Societa Carnegle
Mellon
Universi

Systems Department

Catching performance bugs

e Observation in natural environment e Observation in real-time operation
e Real-time data collection e Monitoring system performance & resources
e Understanding ecosystem impact e Analyzing software’s interaction with its surroundings
e Non-invasive techniques e Minimal impact on running application
e Behavioral pattern analysis e Detecting anomalies and performance issues
X Nitlon

Universi

Profiling and tracing

« Profiling is a process to analyze and measure the performance of a
program or specific parts of its code (e.g., functions).
« Tracing is about understanding the flow of execution and the
behavior of a program.
Record sequential events (function calls) that occur during the
execution of a program
- Both can be used to identify bottlenecks in execution time and
memory

Carnegie

Software and Societa Mell 2
Systems Department elion

Universi

Performance analysis via
Instrumentation

« Embedding additional code to monitor the program's behavior

factorial(n) {

® Usa e: console:log wrh ‘, \ factorial calct
g start = performance.now();

result = 1;

» Source Code (Static): Additional instructions for data ~ e
CO”eCtlon. ‘ result *= i;

« Binary Files (Dynamic): Inserting monitoring code at e e e
runtime without altering the source.

console.log(Time taken end - start} milliseconds”);

result;

« Applications:

« Profiling: Execution time, function call frequency, and
resource usage.

« Tracing: Record detailed execution flow, tracking function
entries/exits and event sequences.

Software and Societa E/[all'flegle
Systems Department elion

Universi

What's the output of this program?

S3D T Vit

University

Sampling stack traces

D Software and Societa Carnegie
Systems Department Mellon
University

Sampling stack traces

Software and Soc t Carnegie
33D Systems < De epar artme Mellon

Universi

Flame Graphs

T h e FIGURE 3: FULL MYSQL DTRACE PROFILE OUTPUT

Flame Graph

THIS | BRENDAN GREGG, NETFLIX
VISUALIZATION
OF SOFTWARE
EXECUTION n everyday problem in our industry is understanding
IS A NEW how software is consuming resources, particularly
NECESSITY FOR & CPUs. What exactly is consuming how much, and
PERFORMANCE g4 how did this change since the last software version?
Software and Societa Carnegie
83 D Systems Department Mellon

Universi

Flame Graphs

FIGURE 3: FULL MYSQL DTRACE PROFILE OUTPUT

Flame Graph

libc.s0.1°_Iwp_start

Software and Societa E/[all'lnegle
Systems Department elion
Universi

How to read a Flame Graph?

e Top edges of the flame
graph show the functions
that were running on when
the stack trace was collected

e Top down shows ancestry

e Box width proportional to
presence in stack traces

Software and Societa E/[arnegle
Systems Department ellon

Universi

Q. What does the flame graph for this
code look like?

Softwa
Systems Dep ttttttt

f6() - f1e() appear
less frequently at the
top of the stack traces

L
|

ML

£5() is more
commonly found at
the top of the stack
traces when they were
collected.

-_analysis_ex/test _gython _perf.py

L JCode
run_eval_code_obj

| _PyRun_SimpleFileObject

| pymain_run_python.constprop.0
I in -

Software and Societa Carnegle
Mellon

Universi

Systems Department

Profilers often included in IDEs

JustTrace Session & X P,

all Tree

YOHT
a
B [DemeTe.

TIMELINE

Current views:
Snapshot for 09:27:21 - 09:27 *

OVERVIEW

cau TRsEs
B AN Theeads
METHODS

B anRhod:

Software and Societa g/[all'flegle
Systems Department Bl
Universi

Domain-Specific Perf Testing
(e.g. JMeter for Java web apps)

Apache JMeter Dashboard by UbikLoadPack -

jmeter_influx v JMeter_demo ¥ { JROK ~ Start/stop marker

Summary

Total Requests Failed Requests Received Bytes Sent Bytes Error Rate %

2107 Requests Failed

Total Throughput Total Errors Active Threads

Threads:

{\H J\/./\/ /VW'V v f\ i /\/\/\ ~ N 2 2018-04-10 16:03:40

15:58

Num of Errors < Threads

Transactions Response Times (95th pct)

http://imeter.apache.or;
Ss Software and Societa Carnegle

Systems Department Me!lon .
Universi

http://jmeter.apache.org/

Stress testing

 Scalability/Robustness testing technique: test beyond the
limits of normal operation.

« Can apply at any level of system granularity.

. Keyidea: throw large amounts of input / requests and see
how the program behaves

. Often a way to test the error-handling capabilities of the
application

Software and Societa g/[all'flegle
Systems Department elion

Universi

Real Issues: Disney+ Launch

e Lots of issues reported on launch day. st connc 1 ey
o Disney had planned for a spike in traffic.
- Tested massive concurrent video streaming capability.

e BUT: the stress was in paths other than streaming

User account creation
Logins and auth

Browsing old titles M

Software and Societa Carnegle
Systems Department Mellon

Disney+ problems last 24 hours

Universi

Soak testing

« A system may behave exactly as expected under artificially
limited execution conditions, but fail in production after
extended use.

. E.g., Memory leaks may take longer to lead to failure

. Soak testing a system involves applying a significant load

over a significant period of time and observing system
resilience.

« Time-consuming to run but useful to apply at big release
milestones or when making infrastructure changes.

Software and Societa
Systems Department

Carnegie
Mellon
Universi

Activity:
Pick one scenario based on where you are seating

E-Commerce Web Application (front rows)
Automotive Software for Self-Driving Cars (middle rows)
Mobile Gaming Application (back rows)

Discuss in groups of 2-3:

- Enumerate specific performance challenges in the your scenario.
« Pick one dynamic analysis technique to address some of these
challenges.

Software and Societa g/[all'flegle
Systems Department elion

Universi

Testing in Production

Beta testing

S D Software and Societa Carnegie
Systems Department Mellon
Universi

Telemetry

Crash2.exe has encountered a problem and needs to
close. We are sony for the inconvenience.

If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an error report that you can send to us. 'We will treat
this report as confidential and anonymous.

Send Error Report Don't Send

Software and E222 E/[arnegle
Systems Department ellon

Universi

Reliability testing

« What happens when some components of a large complex
system fail? Can the system recover and keep working?

« How can you test the reliability of something as complex as
Netflix or Google maps or Instagram?

« One idea: simulate a large-scale deployment and induce
random failures in various components

« Anotheridea... Testin Production with Chaos Engineering

Software and Societa Carnegle
Systems Department Mellon

Universi

What is chaos engineering?

e "Chaos Engineering is the discipline of
experimenting on a system in order to build
confidence in the system's capability to withstand
turbulent conditions in production.”

principlesofchaos.org

Carnegie

Software and Soc t
83D Systems D tm Me!lon :
ys epar Universi

Chaos Engineering: Testing in Production

Purposefully take down components in a live deployment.

Observe system response. Do failovers work correctly?

Tests the failure-handling and fallback capabilities of large
systems.

Useful in preparing for natural disasters or cyberattacks.

(Carnegie
Soft and Soc t (<]
SSD Syste th Depar tm Mellon

Universi

Example: Google

Terminate network in Sao Paulo for testing:
- Hidden dependency takes down links in Mexico which would
have remained undiscovered without testing

Turn off data center to find that machines won't come back:
- Ran out of DHCP leases (for IP address allocation) when a
large number of machines come back online unexpectedly.

Software and Societa Carnegle
Systems Department Mellon

Universi

Why would you break things on purpose?

S D Software and Societa Carnegie
Systems Department Mellon
Universi

Failures in Microservice Architectures

Network may be partitioned

Server instance may be down

Communication between services may be delayed
Server could be overloaded and responses delayed

Server could run out of memory or CPU

Carnegie

Software and Soc t
S3D e veparime Mellon
ys epar Universi

Example: Netflix

Significant deployment on AWS cloud. Hundreds of
updates to microservices and infrastructure
through the day.

Chaos Monkey randomly takes down AWS
instances or network connections or randomly
changes config files.

=N ! ! |
H OW to tel | "a re We Sti I I gOOd?" 1730 2015 23:00 01:,5.,,3 0430 07:15 10:00 12:45 1500
Key m et rl C: St rea m Sta rts p e r S e CO n d (S PS) FIGURE 2. A graph of SPS (jstream] starts per second) over a 24-hour period. This
Measures availability D e s o)

Software and Societa Carnegie
Systems Department Mellon

Universi

Testing GUIs and Usability

Automating GUI/Web Testing

e Thisis hard

« Capture and Replay Strategy
. mouse actions
- system events
o Test Scripts: (click on button labeled "Start" expect value X
in fieldY)
 Lots of tools and frameworks
e.g. Selenium for browsers
« Can avoid load on GUI testing by separating model from
GUI

« Beyond functional correctness?

(Carnegie
Soft and Soc t (<]
SSD Syste th Depar tm Mellon

Universi

Usability: A/B testing

« Controlled randomized experiment with two variants, A
and B, which are the control and treatment.

« One group of users given A (current system); another
random group presented with B; outcomes compared.

« Often used in web or GUI-based applications, especially to
test advertising or GUI element placement or design
decisions.

Software and Societa Carnegle
Systems Department Mellon

Universi

Example

« A company sends an advertising email to its customer
database, varying the photograph used in the ad...

Software and Societa g/[arnegle
Systems Department ellon

Universi

Example: group A (99% of users)
.3 TaT

Act now!
Sale ends soon!

Nk
CARY

Example: group B (1%)

Act now!
Sale ends soon!

Software and Societa Carnegie
Systems Department Mellon

Universi

WEB IMAGES VIDEOS MAPS SHOPPING LOCA NEWS MORE

biNg | flowers el

° °
' l ‘ E r T] ea n 358,000,000 RESULTS
B I E X r I t Flowers at 1-800-FLOWERS®
7B00Flowers. com T

Fresh Flowers & Gifts at 1-300-FLOWERS. 100% Smile Guarantee, Shop Now

FTD® - Flowers

Get Same Day Flowers in Hours! Buy Now for 25% Off Best Sellers.

%md Flowe $ from $19.99

- Experiment: Ad Display at Bing

. Suggestion prioritized low
- Not implemented for 6 months

- Ran A/B test in production s
. . . . C !ng flowers
. Within 2h revenue-too-high alarm triggered R

. . T FTD@-Flmrs
suggesting serious bug (e.g., double billing) M

- Revenue increase by 12% - $100M annually in US s ———
. . . Send flowersf{:)m 19.99
Did not hurt user-experience metrics o

'Besl Value™ -Wall Street Journal
sroflowers is rated

m
Al Flowers on the Sith are 50% OF, Taks Advantage and Buy Today!

o]

rate (1307 re

19.99 - Cheap Flowers - Delivery Today By A Local Flonstl <
""" w.FromYouFlowers.com
Shop Now & S ve $5 Instantly.

Kohavi, Ron, Diane Tang, and Ya Xu. "Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing." 2020.

Software and Societa g/[arnegle
Systems Department ellon

Universi

The power of online experimentation

The Growth of Experimentation at Bing

350
300
e Growth takes off once
Zzx z g
& w the experimentation
w 250
zZ3 platform allows a user
= & to take part in multiple
& a 200 experiments at the
= e same time, supporting
wE 50 virtually unlimited
wE concurrent tests
aq \
S 100 v
oF ‘I I “ Y]
I
N A V]
N TN ' ‘
TR Y -~ W ONTAN W '
0
2008 2009 2010 2011 2012 2013 2014

FROM “THE SURPRISING POWER OF ONLINE EXPERIMENTS,”
SEPTEMBER-OCTOBER 2017, BY RON KOHAVI AND STEFAN THOMKE © HBR.ORG

83 Software and Societa Carnegle

Systems Department Me!lon _
Universi

™ 01/23/2017-01/31/2017
V1 (Old Design)

Sessions (OLD) Pageviews (OLD)

24,301

New Visitor vs Returning Visitor (OLD)

\ 1 New Vastor 55 (24%)

W g Vieror 18045 (76%)

Pageviews Trend (OLD)

11172007
Bounce Rate (OLD) Time on Site in seconds (OLD)

62.19% 187
Pages / Session (OLD)

247

Sessions w. Search (OLD)

List Through Rate (OLD)

2.10%

Contact Through Rate (OLD)

Sessions by Marketing Channel (OLD)

Sessions by Landing Page (OLD) Bounce Rate by Landing Page (OLD)
LANDING PAGE GROUP 1 Logn
v wmn RosuicBrowse
enp 3206 Homégage
Momesage 2464 RosultsSesech
ActivateAdSuccenn 1080 Ll
Search Pages / Session (OLD) Search Paceviews Trend (OLD)

Software and Societa
Systems Department

59,987

5.61%

4.12%

Bounce Rate by Marketing Channel (OLD)

W Bounce Rata

2088

nmm
A
EEFITY
s

V2 (New Design)
Sessions (NEW) Pageviews (NEW)
13,091 100,623
New Visitor vs Returning Visitor (NEW) Pageviews Trend (NEW)

1 New Viser 1009 (8%)

[Reteneg Vet 12082 (02%)

Bounce Rate (NEW)
25.03%
Pages / Session (NEW)
7.69
List Through Rate (NEW)
2.09%

Sessions by Marketing Channel (NEW)

Sessions by Landing Page (NEW)
LANDING PAGE GROUP 1| SEIBONS.
wie aa29
Homepage 2902
ResulisSesrch 2000
Results Browse. 1590
Search Paces / Session (NEW)

Source: https://cognetik.com/why-you-should-build-an-ab-test-dashboard/

A

Time on Site in seconds (NEW)
443
Sessions w. Search (NEW)
42.23%
Contact Through Rate (NEW)

5.43%

Bounce Rate by Marketing Channel (NEW)

W Bounce Ruts

Bounce Rate by Landing Page (NEW)

Userfiegatranonfom [T
EatAdiomm an
Homepage 4%
Login 1a4m
MrAZs 1815

Search Paoeviews Trend (NEW)

Carnegie

Mellon
Universi

https://cognetik.com/why-you-should-build-an-ab-test-dashboard/

A/B Testing

« Requires monitoring tools and telemetry
« Requires good metrics and statistical tools to identify significant
differences.
« E.g. clicks, purchases, video plays
« Must control for confounding factors

« Automation:
« Stop experiments when confident in results
« Stop experiments resulting in bad outcomes (crashes, very low sales)

« Automated reporting, dashboards

Carnegie

Software and Societa Mell
Systems Department elion
Universi

Learning Goals

Describe random test-input generation strategies such as
fuzz testing

Identify and discuss the key challenges associated with
performance testing in software development.
Understand the ideas behind chaos engineering and how
it is used to test resiliency of cloud-based applications
Describe A/B testing for usability

Recommend appropriate dynamic analysis techniques for
specific software quality issues.

Software and Societa g/[all'flegle
Systems Department elion

Universi

