QA: Analysis Tools

17-313 Spring 202
Foundations of Software Engineering

https://cmu-313.github.io
Michael Hilton and Edwardo Feo Flushing

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

https://cmu-313.github.io/

Learning Goals

« Gain an understanding of the relative strengths and
weaknesses of static and dynamic analysis

« Examine several popular analysis tools and understand their
use cases

- Understand how analysis tools are used in large open-source
software

Carnegie

Software and Societal ; _
Systems Department 1\’16!1011 .
University

[] [] [] []
a Alexis Axon 10:12 PM
@channel Reminder that we have a midterm review session this Saturday @ 1pm in GHC 6115 and
the midterm itself one week from today! We will do our best to stream and record the review session

(Zoom link will be in #announcements), but cannot promise full intelligibility or a lack of other
technical issues. Attached you will find some practice midterms from year's past that may be helpful in
your prep - you may wish to do some of them before the review session since we will go over some of
the answers on Saturday. Because we haven't covered ML yet this semester, feel free to ignore those
sections.

« EXAM NEXT WEEK!
* Practice exams are posted to slack
Review session: Saturday @ 1pm in GHC 6115

Review the previous exams, and bring questions to the review
session

ODR Requests (should) have been approved

NOTE: Bonus points for handwritten cheat sheet, but printed is
allowed to be used

 Please review grades on canvas.
« Don't forget to do the teamwork survey. Participation point.

Carnegie

Software and Societal ; _
Systems Department 1\’1&!1011 .
University

Software can be hard

e https://www.destroyallsoftware.com/talks/wat

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

https://www.destroyallsoftware.com/talks/wat

1. static OSStatus
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4 uint8 t *signature,

5 UIntl6 signaturelLen) {

6. 0SStatus err;

7

8 if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
9 goto fail;

10. if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15.

16.fail:

17. SSLFreeBuffer (&signedHashes);

18. SSLFreeBuffer (&hashCtx);

19. return err;

20.}

A P .
Software and Societal Carnegie
Systems Department Mellon

University

1. static OSStatus
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4 uint8 t *signature,

5 UIntl6 signaturelLen) {

6. 0SStatus err;

7

8 if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
9 goto fail;

10. if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15.

16.fail:

17. SSLFreeBuffer (&signedHashes);

18. SSLFreeBuffer (&hashCtx);

19. return err;

20.}

A P .
Software and Societal Carnegie
Systems Department Mellon

University

goto fail;

Apple's SSL iPhone vulnerability: how
did it happen, and what next?

Charles Arthur ZD et s e s @ Q & 88
s B S et o i ol NET = = ©° b oy sokes amamies
lack of testing ‘shameful
. ; / business e ——
goto fail; // Apple SSL bug test site When will Apple get serious about security?
This site will help you determine whether your c¢ The tech community (and beyond) is an uproar over the
recently revealed IOS and OS X SSL/TLS code flaw. Apple
— developers have questions about Apple's commitment to
quality and the flaw itself.
YOUR BROWSER IS VULNERABLE
!‘g :ﬁo‘ Wrimee Dy David Morgenstern, Contrinior on feb 23 200
We have examined your OS and browser version information and de
our test image after seeing an invalid ServerKeyExchange message
networks) can freely snoop on you, for exampie when you log into

tham richt awav. Other aoolications on vour svstem such as mail.
© Apple's SSL vulnerability is still active on Safanon M 15 X a8 shown at the gotods) e

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

1./* from Linux 2.3.99 drivers/block/raid5.c */
2.static struct buffer _head *

3.get free buffer(struct stripe_head * sh,

4. int b _size) {
struct buffer_head *bh;
unsigned long flags;
save_flags(flags); ERROR: function returns with
cli(); // disables interrup interrupts disabled!

if ((bh = sh->buffer_pool) ==44

10. return NULL;

11. sh->buffer_pool = bh -> b next;

12. bh->b size = b_size;

O 00 N O Un

13. restore flags(flags); // re-enables interrupts
14. return bh;
15.}

Software and Societal Qa.l'l'legle
Systems Department Mellon

University

Twitter's week year bug

ISO 8601 rule: The first week of the year is the week
containing the first Thursday.

“So if January 1 falls on a Friday, it belongs to the last
week of the previous year. If December 31 falls on a
Wednesday, it belongs to week 01 of the following year.

”

DateTimeFormatter.ofPattern("dd MMM YYYY").format(zonedDateTime)

Use yyyy instead of

YYYY

D Software and Societal
Systems Department

Twitter kicks Android app users out for
five hours due to 2015 date bug

The social network celebrated 2015 in style, by breaking its
Android app and mobile website - and all, it seems, because of one
misplaced letter

© Crashy bird: Twitter was down for five hours overnight. Photograph: Richard Drew/AP

If you’re worried about how your New Year’s Eve will go, don’t. It’s not even
2015 yet, and Twitter’s already had a worse one than you.

The service was down for many users over five and a half hours on Monday
morning UK time, between midnight and 5am (7pm to midnight ET, and 4pm
to 9pm PT), after a bug in a line of code caused the service to think that it
was 29 December, 2015.

Carnegie
Mellon
University

Could you have found them?

- How often would those bugs trigger?
- Driver bug:

- What happens if you return from a driver with interrupts
disabled?

- Consider: that's one function

. ...in'a 2000 LOC file

. ...iIn-a module with 60,000 LOC

- ...IN THE LINUX KERNEL

« Some defects are very difficult to find via testing, inspection.

Carnegie

Software and Societal ; _
Systems Department 1\’1&!1011 .
University

Defects of interest...

- Are on uncommon or difficult-to-force execution paths. (vs
testing)

- Executing (or interpreting/otherwise analyzing) all paths
concretely to find such defects is infeasible.

- What we really want to do is check the entire possible state
space of the program for particular properties.

- What we CAN do is check an abstract state space of the
program for particular properties.

Software and Societal Carnegle
Mellon

Systems Department . .
University

What is Static Analysis?

- Systematic examination of an abstraction of program state space.
- Does not execute code! (like code review)

- Abstraction: produce a representation of a program that is simpler to
analyze.

- Results in fewer states to explore; makes difficult problems tractable.
- Check if a particular property holds over the entire state space:

- Liveness: “something good eventually happens.”

- Safety: “this bad thing can't ever happen.”

- Compliance with mechanical design rules.

Software and Societal Carnegle
Systems Department Mellon

University

Activity: Analyze the Python program statically
(Yes/No/Maybe)

def n2s(n: int, b: int):
if n <= 0: return '0’
Fo
while n > 0:
u=n%b
if u>=10:

u = chr(ord('A") + u-10)

n=n//b
r=str(u) +r
return r

S3D

Software and Societal
Systems Department

What are the set of data types taken
by variable 'u” at any point in the
program?

Can the variable 'u’ be a negative
number?

Will this function always return a
value?

Can there ever be a division by zero?

Will the returned value ever contain a
minus sign -’?

Carnegie
Mellon

University

What static analysis can and cannot do

« Type-checking is well established « Reasoning about exact values is hard, but
. Set of data typestaken by variablesatany point conservative analysis via abstraction is possible
« Canbe usedto preventtype errors(e.g.Java)or « Istheboundscheck before "a[i]” guaranteeingthat
warn about potential type errors (e.g. Python) “I" iswithinbounds?

. Vi ?
« Checking for problematic patterns in syntax is Canthe divisor evertake on a zerovalue:

easy and fast Could theresultof a function call be "42°?

+ Is thereacomparison of two Java strings using » Wil th's. mu!tpthreaded programegivemea
N deterministic result?

- Isthereanarrayaccess “a[i]” withoutan enclosing * Be preparedfor "MAYBE

bounds checkfor “i"? - Verifying some advanced properties is possible
« Reasoning about termination is impossible in but expensive
general « Cl-based staticanalysis usually over-approximates

 Haltingproblem conservatively

Al .
Software and Societal Qarllegle
Systems Department Mellon

University

The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete, unsound, undecidable, or
a combination thereof

“Any nontrivial property about the language recognized by a Turing

machine is undecidable.”
Henry Gordon Rice, 1953

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Static Analysis is well suited to detecting certain defects

e Security: Buffer overruns, improperly validated input...

« Memory safety: Null dereference, uninitialized data...

« Resource leaks: Memory, OS resources...

« APl Protocols: Devicedrivers; real time libraries; GUI frameworks
« Exceptions: Arithmetic/library/user-defined

« Encapsulation:
 Accessing internal data, calling private functions...

» Data races:
« Two threads access the same data without synchronization

Al .
Software and Societal Carnegle
Systems Department Mellon

University

Static Analysis: Broad classification

* Linters
 Shallow syntax analysis for enforcing code styles and formatting

 Pattern-based bug detectors

« Simple syntax or APl-based rules for identifying common programming
mistakes

« Type-annotation validators
« Check conformance to user-defined types
« Types can be complex (e.g., “Nullable”)

 Data-flow analysis / Abstract interpretation)

» Deep program analysis to find complex error conditions (e.g., "can array
index be out of bounds?”)

Carnegie

Software and Societal ; _
Systems Department 1\’1&!1011 .
University

Static analysis can be applied to all attributes

* Find bugs

 Refactor code

« Keep your code stylish!

* |[dentify code smells

Measure quality

* Find usability and accessibility issues

- |[dentify bottlenecks and improve performance

hl .
Software and Societal Qarllegle
Systems Department Mellon

University

Activity: Analyze the Python program dynamically

def n2s(n: int, b: int): 1. What are the set of data types taken

if n <= 0:return '0’ by variable ‘u" at any point in the
F=" program?
while n > 0O:

2. Did the variable 'u” ever contain a

u=nb negative number?
if u>=10: : . : :
. 3. For how many iterations did the while
u = chr(ord('A") + u-10) loop execute?
n=n//b o
4. Was there ever be a division by zero?
r=str(u) +r
return r 5. Did the returned value ever contain a

minus sign -’?
print(n2s(12, 10))

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Dynamic analysis reasons about
program executions

* Tells you properties of the program that were definitely
observed
« Code coverage
« Performance profiling
 Type profiling
 Testing

* In practice, implemented by program instrumentation
« Think "Automated logging”
* Slows down execution speed by a small amount

Al .
Software and Societal Qarllegle
Systems Department Mellon

University

Static Analysis vs Dynamic Analysis

* Requires only source code * Requires successful build + test inputs

* Conservatively reasons about all possible * Observes individual executions
inputs and program paths

* Reported warnings may contain false * Reported problems are real, as observed by a
positives witnhess input
_ . * Can only report problems that are seen. Highly
e Can report all warnings of a particular class dependent on test inputs. Subject to false
of problems negatives

* Advanced techniques like symbolic execution
e Advanced techniques like verification can can prove certain complex properties, but
prove certain complex properties, but rarely rarely run in Cl due to cost
run in Cl due to cost

Al .
Software and Societal Qarllegle
Systems Department Mellon

University

Static Analysis

Software and Societal Carnegie
Systems Department Mellon

University

Tools for Static Analysis

0 cs .2, R

ﬂ snyk sonarqube\\\

Static analysis is a key part of continuous integration

</
S

% E P

COMMIT
o O— 00— 000
‘ BUILD UNIT |NTEGRATION
TESTS TESTS
o

Cl PIPELINE

RELATED CODE

%
TR .
G Travis Cl B¢

GitHub Actions

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Static analysis used to be an academic amusement; now
it's heavily commercialized

Mrketplace ~ Search results

GitHub acquires code analysis tool Semmle

Frederic Lardinois ede 1:30§ T+ Septe |

Types

Actions

Categories

H‘L % API management

Chat
+ Semmle
Gode review

Continuous integration
Dependency management
Deployment

IDEs

Learning

Localization
Mobile

Monitoring

Project management

Publishing

D Software and Societal
Systems Department

Q gearch for apps and actions

Apps

Build on your werkflow with 2pps that integrate with GitHub,

306 results filtered by Apps

Zube &
Aglle project management that lets the entire
team work with developers on GitHub

Crowdin
Aglle localization for your projects

BackHub
Reliable GitHub repository backup, set up In
minutes

Codacy @
Automated code reviews to help developers
ship better software, faster

Semaphore)
Test and deploy at the push of a button

DeepScan)
Advanced static analysis for automatically
finding runtime errors In JavaScript code

o
@

1

o
@

WhiteSource Bolt ¢

Detect open source vulnerabilities in real
time with suggested fixes for quick
remediation

Slack + GitHub
Connect your code without leaving Slack

GitLocalize
Continuous Localization for GitHub projects

Code Climate)
Automated code review for technical debt
and fest coverage

Flaptastic &

Manage flaky unit tests. Click a checkbox (o
instantly disable any test on all branches
Works with your current test suite

Depfu
Automated dependency updates done right

GitHub

News

Snyk Secures $150M, Snags $1B
Valuation

Sydney Sawaya | Assoclate Editor
January 21, 2020 1:12 PM

Share this article:

(=N Xinl { M

Snyk, a developer-focused security startup that and Identifies vulnerabilities in open source applications,
announced a $150 million Series C funding round today. This brings the company'’s total Investment to
$250 million alongside reports that put the company's valuation at more than $1 billion.

snyk

Carnegie

Mellon
University

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

Static analysis is also integrated into IDEs

“ 3@

c++ Cppcoreguidelines.cpp

// To enable only C++ Core Guidelines checks
2 // go to Settings/Preferences | Editor | Inspections | C/C++ | Clang-Tidy
3 // and provide: -x,cppcoreguidelines—* in options

void fill_pointer(intx arr, const int num) {
6 for(ipt i = 0; i < num; ++i) {
7 arr[il = 0;
8 1
Do not use pointer arithmetic

void fill_array(int ind) {

= — e o et
= arrlind] = @; Wit 8 Hh 10t 41w

} ler an HTML page returned to the user. This may
void cast_away_const(const int& magic_num) s

/ { 2 . - ‘5Lv:nq" & item.match{ imgRe
18 const_cast<int&>(magic_num) = 42; §
}

|1 1ow
9 high | 21 medium | 25 low
critical | 66 high | 56 medium | 142 low

33 D Software and Societal https://clang-analyzer.llvm.org Cal'llegle

Systems Department Mﬁ!]()l .
University

What makes a good static analysis tool?

Staticanalysis should be fast
« Don'thold up developmentvelocity
« This becomes more important as code scales

Staticanalysis should report few false positives
« Otherwise developerswill start to ignore warnings and alerts, and quality will decline

Staticanalysis should be continuous
« Should be part of your continuous integration pipeline
- Diff-based analysisis even better -- don't analyse the entire codebase; just the changes

Staticanalysis should be informative

« Messagesthat help the developerto quickly locate and address the issue
« Ideally, it should suggest or automatically apply fixes

hl .
33 D Software and Societal https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later /fulltext Carnegle

Systems Department 1\"16!1011 .
University

Lessons for Static Analysis Tools at
Google

« Make It a Compiler Workflow
* Value of compiler checks.
¢ Reporting issues Sooner iS Forast:al:it:analysis;projet:ttoSI_u:t:emt::l.,1 11111111111

developers must feel they benefit from

b ette r :::A:I‘Tj::AlIIJz:‘SgI(IitE.DWARD AFTANDILIAN, ALEX EAGLE
» Warn During Code Review Lessons

« Engineers working on static from Building
analysis must demonstrate Static Analysis
impact through hard data. Tools at Google

contributed articl

Carnegie

Software and Soc t |
S3D < imsoemarime Mellon
University

L essons learned

* Finding bugs is eas . _
5 U8)/ contributed articl
« Most developers will not go
OUt Of their Way to use Static Forastaticanalysisprojecttosuccpeo:: 111111111111
a na |ySiS tOO|S. :::e::;:oeyr: :i‘:gs:tf.eel they benefit from

» Developer happiness is key. oL o, A1
Do not just find bugs, fix Lessons_]
from Building

them. Static Analysis

« Crowdsource analysis Tools at Google
development.

Carnegie
Mellon

33 D Software and Societal
Systems Department . .
University

(1) Linters: Cheap, fast, and lightweight static source analysis

hl .
Software and Societal Qarllegle
Systems Department 1\16!1011 '
University

Use linters to enforce style guidelines

Don't rely on manual inspection during code review!

;\S‘“‘ & RuboCop @

ﬂ @ python
:-;% Javar

Software and Soc t | https://checkstyle.sourceforge.io/ Carne gie
Systems D epar tm 1\'1611011

University

Linters use very “shallow” static analysis
to enforce formatting rules

e Ensure proper indentation

* Naming convention

* Line sizes

* Class nesting

« Documenting public functions

« Parenthesis around expressions
* What else?

So ftw d s t | (»31‘11‘5‘ gie

Unne rsity

Use linters to improve maintainability

« Why? We spend more time reading code than writing it.
* Various estimates of the exact %, some as high as 80%

« Code is ownership is usually shared
* The original owner of some code may move on

« Code conventions make it easier for other developers to
quickly understand your code

Al .
Software and Societal Qarllegle
Systems Department Mellon

University

Use Style Guidelines to facilitate communication

Style Guidelines

. Chicago

PEP 8 -- Style Guide for Python Code e e

+ [FIXME #NNNNN]: Like [FIXMEL b

PEP: 5 [RFC #NNNNE: Marks sccepisd guidel

Titte: Style Guide for Python Code: Guideline stabilization
Author. Guido van Rossum <guido at python.arg>, Barry Warsaw <barry at python.org>, Nick anua
gmail.com>

Pytnon Developers ... s Hetive
B snmscomro: e Proces
Created: 05-Jul-2001

of Style

Post- 05-Jul-2001, 01-Aug-2013
nyhunSthn:n‘ Foundation & History:
. What's In this document
. Thi documen &

in of Little Minds THE E NTIAL GUIDE

for Wri ditors, and Publishers

- Should a Line Break Before or After a Binary Operator?

Guidelinesare inherently opinionated, but consistency is the important point.
Agree to a set of conventionsand stick to them.

hn.‘ps!ﬁ,‘ WW ChcangaD a QEI':'E Qg{ hIIDSfngQgE gIh b Q!Snfeg de{ hIIQS'“!MMﬂM D!EhQﬂ Q[g{deﬂ{pgpsfpep.(! 08

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008

Take Home Message:
Style is an easy way to improve readability

« Everyone has their own opinion (e.g., tabs vs. spaces)

« Agree to a convention and stick to it
« Use continuous integration to enforce it

« Use automated tools to fix issues in existing code

So ftw d s t | (»31‘11‘5‘ gie

Unne rsity

(2) Patten-based Static Analysis Tools Sp@{Bugs

. ‘“E“D"r . . .
« Bad Practice My T o Deernen
i 56
2, WOW S This document lists the standard bug patterns reported by FindBugs version 3.0.1
ARYLAS - gmt s
- iy Umimal
FindBugs e
because it's casy” Description Category
Y ‘ O r re C t n e S S BC: Equals method should not assume anything about the type of its argument Bad practice
Docs and Info BIT: Check for sign of bitwise operation Bad practice
FPindBuge 2.0 CN; Class implements Cloneable but does not define or use clone method Bad practice
m E :;mm CN: clone method does not call super.clone) Bad practice
e CN: Class defines clone() but doesn’t Cloneable Bad practice
Pact shest CNT: Rough value of known constant found Bad practice
Manual Co: Abstract class defines covariant compareTo() method Bad practice
. o/ B%E] Co: compareTo()/compare() incorrectly handles float or double value Bad practice
i Co: compareTo()/compare() returns IntegeMIN VALUE Bad practice
::9 descriptions g | CoxCovariant compareTo() method defined Bad practice
Pug “""“."’“““”“"“.m,,, DE: Method might drop exception Bad practice
Mailing lists DE: Method might lgnore exception Bad practice
Documents and Publications = DML; Adding elements of an entry set may fail due to reuse of Entry objects Bad practice
[[[Links DMI: Random object created and used only once Bad practice
) DML: Don't use removeAll to clear a collection Bad practice
Downloads sstem) Bad practice
Dm: Method invokes dangerous methed runFinalizersOnExit Bad practice
FindBugs Swag ES: Comparison of String using == or I= Bad practice
ES: Comparison of String objects using == or l= Bad practice
mm ent Eq: Abstract class defines covariant equals() method Bad practice
M M . Reporting bugs Eq: Equals checks for incompatible operand Bad practice
o l I Contributing Eq: Class defines compareTo(...) and uses Object.equals() Bad practice
a I C I O S O e i Eq: equals method fails for subtypes Bad practice
API [no frumes] Eq: Covariant equals() method defined Bad practice
Change log -
e FL: Empty finalizer should be deleted Bad practice
Browse source FL: Explicit invocation of finalizer Bad practice
Latest code changes FL Finalizer nulls fields Bad practice
. FI: Finalizer only nulls fields Bad practice
 Multithreade orrectness S S
FL: Finalizer nullifies superclass finalizer Bad practice
Eﬂaﬂzeﬂggs.ngﬂﬂngw}lexﬂas&ﬂnﬁmgr Bad practice
: Bad practice
GC; Unchecked type in generic call Bad practice
HE: Class defines equals() but not hashCode() Bad practice
M HE: Class defines equals() and uses Object.hashCode(). Bad practice
o e C r' I t HE: Class defines hashCode() but not equals() Bad practice
l I HE: Class defines hashCode() and uses Object.equals() Bad practice
HE: Class inherits equals() and uses Object.hashCode() Bad practice
IC: Superclass uses subclass during initialization Bad practice
Mnmmmqﬂleqmmmmm Bad practice
pplies static methods Bad practice
It: Iterator next() method can't throw NoSuchElementException Bad practice
® O O e J2EE: Store of non serializable object into HitpSession Bad practice
CIP: Fields of immutable classes should be final Bad practice
ME: Public enum method unconditionally sets its field Bad practice

I " ™My Scftware and Societal Cal neg le

httpS://swldd&mnmmeﬂarémﬂmgDescri ptions.html

http://findbugs.sourceforge.net/bugDescriptions.html

SpotBugs can be extended with plugins

{3k} Find Security Bugs

The SpotBugs plugin for security audits of Java web applications.

InsecureBankv2 - [C\Code\Android-InsecureBankv2\InsecureBankv2_studio] - [2pp] - ..\app\src\main\java\com\android\insecurebank.. — O
File Edit View Navigate Code Analyze Refactor Build Run Tools WCS Window Help

3 InsecureBankv2 studio » C2app » [sre » [main » [java » 51 com » [android » [insecurebankv2 (€ DoTransfer » i buid ~ | B ¥ [k

Q

& Download versien 1.11.0 ® View release notes

B [Project | €3 = | £ |+ llass % | (C ChangePasswordjava % | (© CryptoClassjava ¥ | (C) LoginActivityjava x | € DoTransferjava % e Follow the project:
S+ [InsccureBankv2_studio (C\Code Andioid lnsec a—_— =9 (Last updated: October 29th, 2020) Q srfi 1o
= - : : . Fork 354
= [.idea jsonObject = new JSONObject (result); J g © For 7
" Emapp accl = jsonObject.getString|"Efrom”); ! E © Visit the GitHub project
1 build acc? = json(bject.getString("ta"); =i
E) System.out.println({"Message:" + jsonObject.getString("message") + " From:" + from.: r
E sre -~ final String status = new String("\nMessage:" + "Success" + " From:" + from.getTex _ |
= 1 main g try |t =
! E assets // Captures the s essful transaction status for Trans: History tra o =2 E
v [java e String MYFILE = Environment.getExternalStorageDirectery(] + "/Statements : i z Features
idli % ufferedWriter out2 = new BufferedWriter(new FileWriter rue)); =
[E3 com.android.insecurebankv2 = Bufferediri z Buffersdiir & Filel MYFILE, 1 a
&% ChangePassword out2.write (status); = & € 138 bug patterns </> Support your frameworks and & Integrate with your IDE
- g2 closels = @ It can detect 138 different vulnerability types with over libraries Plugins are available for Eclipse, IntelliJ, Android Studio
FindBugs-DEA FindBugs Analysis Results #H Lo 820 unique APl signatures. Cover popular frameworks including Spring MVC, Struts, and NetBeans. Command line integration is available
5 : - - = a Tapestry and many more. with Ant and Maven.
ﬂu InsecureBankv2 (found 14 bug items in 59 classes) mor: g =
[ﬂ] Security (14 itemns) . R =
[Static IV (2 items) ﬁxtErTalt File _‘:'\‘;CFTS)&Am‘.:r?ld) (potentialy S0 card). Tn & £ Continuous integration + OWASP TOP 10 and CWE coverage) Open for contributions
- B] e application write data to external storage (potentially card). There are =}
E E:p: :: Zii:s::?:z E:‘D pa‘zj(‘it\;]; :J]rac\e attack (2 if] multiple security implication to this action. First, file store on SD card will be é Can be used with systems such as Jenkins and Extensive references are given for each bug patternswith The project is open-source and is open for contributions.
= B: Pl A gAtyd “d by accessible to the application having the READ_EXTERNAL STCRAGE permission & SonarQube. references to OWASP Top 10 and CWE.
Emal bl RccexlEndrouil 't%m'] Also, ifthe data persisted contains confidential information about the user,
[m] Ext?rnal File Access (Android) (4 items) encryption would be needed.
. @ Files could be saved to external storage. Code at risk:
HES C) Files could be saved to external storage. file file = new File({getExter Screenshots
£ RE = | ipti
E = ‘£ Files could be saved to external storage. ¢ FileOutputStres i Ihe/givesallongerdescnpionohthe dete‘cted bug pattern —
z @ ‘£ Files could be saved to external storage. {c dentialData.getBytes()): crreTy
2 B Q@ [*] WebView with JavaScript Enabled (Andraid) (1 ite fos.flush(): - =
L3 [Potential Path Traversal (File Write) (2 items) Better alternative: ° =
[] Broadcast (Android) (1 item) fos = openFileQutput(filename, Context.MODE FRIVAIE);
E X = fos.write (3tring.getl
5 - -
Bt % References E
& CERT: DRDO0-J: Do not store sensitive information on external storage [..] = =
® A rieniAd AFinind Pinn: | lninn tha Fubnenal Obnrnns
8 ToD0 o & Android [E Terminal 2 FindBugs-IDEA Eventlog [=] Gradle Console b Memory Monitor
= 20338 LF: UTF8% b

S35

Software and Societal
Systems Department

Eclipse

IntelliJ / Android Studio

OWASP Find Security Bugs 1.11.0 - Created by Philippe Arteau
Licensed under LGPL

Sonar Qube

https://find-sec-bugs.github.io/

Bad Practice:

String x = new String("Foo");
String y = new String("Foo");

if (x ==y) {
System.out.printin("xand y are the same!");
} else {

System.out.printin("xand y are different!");

}

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

String x = new String("Foo");
String y = new String("Foo");

if (x.equals(y)) {

System.out.printIn("xand y are the same!");
} else {

System.out.printIn("xand y are different!");
}

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Performance:

public static String repeat(String string, int times)

{
String output = string;
for (inti=1;i<times; ++i) {
output = output + string;

}

return output;

A ’ .
Software and Societal Carnegie
Systems Department Mellon

University

Performance: SBSC USE STRINGBUFFER CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
String output = string;
for (inti=1;i<times; ++i) {
output = output + string;

)

+ tout: The method seems to be building a String using concatenation in a loop. In each

return output, iteration, the String is converted to a StringBuffer/StringBuilder, appended to, and

} converted back to a String. This can lead to a cost quadratic in the number of
iterations, as the growing string is recopied in each iteration.

A - .
Software and Societal Carnegie
Systems Department Mellon

University

Performance: SBSC USE STRINGBUFFER CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
int length = string.length() * times;
StringBuffer output = new StringBuffer(length);
for (inti=0;i<times; ++i) {
output.append(string);
}

return output.toString();

}

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Challenges

* The analysis must produce zero false positives
« Otherwise developers won't be able to build the code!

* The analysis needs to be really fast

e I[deally <100 ms

- If it takes longer, developers will become irritated and lose
productivity

« You can't just “turn on” a particular check
. IICE)ve.lr ‘instance where that check fails will prevent existing code from
uilding
» There could be thousands of violations for a single check across
large codebases

Al .
Software and Societal Carnegle
Mellon

Systems Department . .
University

(3) Use type annotations to detect common errors

« Uses a conservative analysis to prove the absence of certain
defects

* Null pointer errors, uninitialized fields, certain liveness issues,
information leaks, SQL injections, bad regular expressions, incorrect
physical units, bad format strings, ...

 C.f. SpotBugs which makes no safety guarantees
« Assuming that code is annotated and those annotations are correct

 Uses annotations to enhance type system

« Example: Java Checker Framework or MyPy
CHECKER

framework

’ Carnegie
SS D SO EIE] e] https://checkerframework.org/ Mellm?

Systems Department

University

Annotations can be applied to types and declarations

// return value
@NonNull String toString() { ... }

// parameter
int compareTo(@NonNull String other) { ... }

// receiver ("this" parameter)
String toString(@Tainted MyClass this) { ... }

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Detecting null pointer exceptions

« @Nullable indicates that an expression may be null

« @NonNull indicates that an expression must never be null
 Rarely used because @NonNull is assumed by default
« See documentation for other nullness annotations

« Guarantees that expressions annotated with @NonNull will
never evaluate to null, forbids other expressions from being
dereferenced

A .
33 D Software and Societal https://checkerframework.org/manual/#nullness-annotations %ﬁﬂll‘ll{l)(;;éle

Systems Department . .
University

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

public void example() {
@NonNull String foo = "foo";
String bar = null;

foo = bar;

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

public void example() {

. @NonNull String foo = "foo";
. String bar = null;
@Nullable is applied by
. foo = bar; - default
. }
©}

A P .
Software and Societal Carnegie
Systems Department Mellon

University

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {

@NonNull String foo = "foo"; @Nullable is applied by

String bar = null; — . default
foc:f”%ar; |
} Error: [assighment.type.incompatible] incompatible types in assignment.
} found : @Initialized @Nullable String
required: @Unknownlnitialization @NonNull String

A - .
Software and Societal Carnegie
Systems Department Mellon

University

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {
@NonNull String foo = "foo",;
String bar = null; // @Nullable

’ bar is refined to
if (bar !=null) { —, @NonNull
foo = bar;
}
}

}

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Is there a bug?

public String getDay(int daylndex) {
String day = null;
switch (daylndex) {
case 0: day = "Monday";
case 1: day = "Tuesday";
case 2: day = "Wednesday";
case 3: day = "Thursday";
}

return day;

}

public void example() {
@NonNull String dayName = getDay(4);
System.out.printin("Today is " + dayName);

}

Carnegie

Software and Societal .-
Systems Department Mellon

University

Is there a bug? Yes.

public String getDay(int daylndex) {
String day = null;
switch (daylndex) {
case 0: day = "Monday";
case 1: day = "Tuesday";
case 2: day = "Wednesday";
case 3: day = "Thursday";

) |
return day; Error: [return.type.incompatible] incompatible typesin return.
} type of expression: @Initialized @Nullable String
method returntype: @Initialized @NonNull String

public void example() {
@NonNull String dayName = getDay(4);
System.out.printin("Today is " + dayName);

}

A - .
Software and Societal Carnegie
Systems Department Mellon

University

% sl M s c H lE Blog Product Solutions Learning Public Projects Case Studies Careers Pricing LogIn Sign Up

171 e AR PSS A I S T

When NASA Lost a Spacecraft Due to

a Metric Math Mistake

WRITTEN &Y POATED ON APPROX READING TIME
G Ajay Harish March 10th, 2020 11 Minutes

Blog > CAE Hub > When NASA Lost a Spacecraft Due to a Metric Math Mistake

f In September of 1999, after almost 10 months of travel to Mars, the Mars Climate Orbiter burned
in and broke into pieces. On a day when NASA engineers were expecting to celebrate, the ground
" J reality turned out to be completely different, all because someone failed to use the right units,

i.e., the metric units! The Scientific American Space Lab made a brief but interesting video on this

very topic.

NASA'S LOST SPACECRAFT

:""’"_ : . " ‘ : v . The Metric System and NASA's Mars Climate Orbiter

y WTR‘C' ENGL KH . WHATE veR A .. The Mars Climate Orbiter, built at a cost of $125 million, was a 338-kilogram robotic space probe

launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and

surface changes. In addition, its function was to act as the communications relay in the Mars

Remember the Mars Climate O]‘biter incident from 1999? Surveyor ‘98 program for the Mars Polar Lander. The navigation team at the Jet Propulsion

Laboratory (JPL) used the metric system of millimeters and meters in its calculations, while

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

- Carnegie
33 D Software and Societal https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/ 1\’1(‘1101‘1:‘
University

Systems Department

Units Checker identifies physical unit
inconsistencies

« Guarantees that operations are performed on the same
kinds and units

e Kind annotations

« @Acceleration, @Angle, @Area, @Current, @Length, @Luminance,
@Mass, @Speed, @Substance, @Temperature, @Time

* S| unit annotation
« @m, @km, @mm, @kg, @MPERs, @mPERs2, @radians, @acraac

@A, ... \ ke 4
'S

s

hl .
33 D Software and Societal https://www.nist.gov/pml/weight s-and-measures/metric-si/si-units Carnegle

Systems Department 1\"16!1011' .
University

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
X=5%*m;

@m int meters =5 * m;
@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m int x; — o
X=5%*m;

_ To assign a unit, multiply appropriate
@m int meters =5 * m: unit constantfrom UnitTools
@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

hl P .
Software and Societal Carnegie
Systems Department Mellon

University

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m intx; — o
X=5%*m;

_ To assign a unit, multiply appropriate
@m int meters =5 * m: unit constantfrom UnitTools
@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

A - .
Software and Societal Carnegie
Systems Department Mellon

University

Does this program compile? No.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
X=5%*m;

@m int meters =5 * m;
@s int seconds =2 *s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

D Software and Societal
Systems Department

Addition and subtraction between
meters and seconds is physically
meaningless

Carnegie
Mellon

University

Checker Framework: Limitations

« Can only analyze code that is annotated
« Requires that dependent libraries are also annotated

 Can be tricky, but not impossible, to retrofit annotations into existing
codebases

* Only considers the signature and annotations of methods
« Doesn’t look at the implementation of methods that are being called

« Dynamically generated code
« Spring Framework

 Can produce false positives!
« Byproduct of necessary approximations

Al .
Software and Societal Qarllegle
Systems Department Mellon

University

Infer: What if we didn't want annotations?

« Focused on memory safety bugs
* Null pointer dereferences, memory leaks, resource leaks, ...

« Compositional interprocedural reasoning
« Based on separation logic and bi-abduction

* Scalable and fast
« Can run incremental analysis on changed code

» Does not require annotations _ @f " @
 Supports multiple languages

e Java, C, C++, Objective-C

* Programs are compiled to an intermediate representation

hl .
Software and Societal Qarllegle
Systems Department https://engineering.fb.com/2017/09/06 /android/finding-inter-procedural-bugs-at-scale-wit h-infer-static-analyzer/ 1\’16!1011 .
University

https://fbinfer.com/

Examples

Infer’s cost analysis statically estimates the execution cost of a program without running the code. For instance, assume that we had
the following program:

void loop(ArrayList<Integer> list){

for (int 1 = 0; i <= list.size(); i++){

NULLPTR_DEREFERENCE

Reported as "Nullptr Dereference" by pulse.

Infer reports null dereference bugs in Java, C, C++, and Objective-C when it is possible that the null pointer is dereferenced, leading
to a crash.

Null dereference in Java

Many of Infer's reports of potential Null Pointer Exceptions (NPE) come from code of the form

Software and Societal Carnegle
Systems Department 1\’1&!1011 .
University

INVARIANT_CALL

Reported as "Invariant Call" by loop-hoisting.

We report this issue type when a function call is loop-invariant and hoistable, i.e.

+ the function has no side side effects (pure)

* has invariant arguments and result (i.e. have the same value in all loop iterations)

« itis guaranteed to execute, i.e. it dominates all loop sources

int foo(int x, int y) {
return x + y;

L
}

void invariant _hoist(int size)
int x = 10;
int y = 5;
for (int 1 = 0; 1 <
fool(x, y);

Software and Societal Carnegle
Systems Department Mellon

University

Which tool to use?

D Software and Societal Carnegie
Systems Department Mellon

University

The best QA strategies employ a combination of tools

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib

andrew.a habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defects4] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i) static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static
detectors shows that some bugs could have been found by variants
of the existing detectors, while others are domain-specific problems
that do not match any existing bug pattern. These findings help
potential users of such tools to assess their utility, motivate and out-
line directions for future work on static bug detection, and provide
a basis for future comparisons of static bug detection with other
bug finding techniques, such as manual and automated testing.

Michael Pradel

michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE "18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.32348213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-
proach is to identify bugs during the development process, e.g..
through pair programming or code review. Another direction is
testing, ranging from purely manual testing over semi-automated
testing, e.g., via manually written but automatically executed unit
tests, to fully automated testing, e.g., with Ul-level testing tools.
Once the software is deployed, runtime monitoring can reveal so
far missed bues. e.g.. collect information about abnormal runtime

Tool Bugs

Error Prone 8
Infer 5
SpotBugs 18

Total: 31

Total of 27 unique bugs

SpotBugs

14

Error Prone

Infer

Figure 4: Total number of bugs found by all three static
checkers and their overlap.

hl P ‘0‘0 I
https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf %‘fgﬁ:ﬁl‘ble

University

D Software and Societal
Systems Department

Which tool to use?

« Depends on use case, available resources
* Linters: Fast, cheap, easy to address issues or set ignore rules

- Pattern-based bugs: Very insightful, need to deal with false positives based
on project domain

- Type-annotation-based checkers: More manual effort required; needs
overall project/team commitment. But good payoff once adopted

- Deep analysis tools: Can find really tricky issues, but can be costly. Might
need some understanding of how the tool works to deal with false positives.

The best QA strategy involves multiple analysis and testing techniques

Software and Societal Carnegle
Systems Department Mellon

University

	Slide 1: QA: Analysis Tools
	Slide 2: Learning Goals
	Slide 3: Administrivia
	Slide 4: Software can be hard
	Slide 5
	Slide 6
	Slide 7: goto fail;
	Slide 8
	Slide 9: Twitter’s week year bug
	Slide 10: Could you have found them?
	Slide 11
	Slide 12: What is Static Analysis?
	Slide 13: Activity: Analyze the Python program statically (Yes/No/Maybe)
	Slide 14: What static analysis can and cannot do
	Slide 15: The Bad News: Rice’s Theorem Every static analysis is necessarily incomplete, unsound, undecidable, or a combination thereof
	Slide 16: Static Analysis is well suited to detecting certain defects
	Slide 17: Static Analysis: Broad classification
	Slide 18: Static analysis can be applied to all attributes
	Slide 19: Activity: Analyze the Python program dynamically
	Slide 20: Dynamic analysis reasons about program executions
	Slide 21: Static Analysis vs Dynamic Analysis
	Slide 22: Static Analysis
	Slide 23: Tools for Static Analysis
	Slide 24: Static analysis is a key part of continuous integration
	Slide 25: Static analysis used to be an academic amusement; now it’s heavily commercialized
	Slide 26: Static analysis is also integrated into IDEs
	Slide 27: What makes a good static analysis tool?
	Slide 28: Lessons for Static Analysis Tools at Google
	Slide 29: Lessons learned
	Slide 30: (1) Linters: Cheap, fast, and lightweight static source analysis
	Slide 31: Use linters to enforce style guidelines
	Slide 32: Linters use very “shallow” static analysis to enforce formatting rules
	Slide 33: Use linters to improve maintainability
	Slide 34: Use Style Guidelines to facilitate communication
	Slide 35: Take Home Message: Style is an easy way to improve readability
	Slide 36: (2) Patten-based Static Analysis Tools
	Slide 37: SpotBugs can be extended with plugins
	Slide 38: Bad Practice:
	Slide 39: Bad Practice: ES_COMPARING_STRINGS_WITH_EQ Comparing strings with ==
	Slide 40: Performance:
	Slide 41: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 42: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 45: Challenges
	Slide 46: (3) Use type annotations to detect common errors
	Slide 47: Annotations can be applied to types and declarations
	Slide 48: Detecting null pointer exceptions
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Is there a bug?
	Slide 54: Is there a bug? Yes.
	Slide 55
	Slide 56: Units Checker identifies physical unit inconsistencies
	Slide 57
	Slide 58
	Slide 59: Does this program compile?
	Slide 60: Does this program compile? No.
	Slide 61: Checker Framework: Limitations
	Slide 62: Infer: What if we didn’t want annotations?
	Slide 63
	Slide 64
	Slide 65: Which tool to use?
	Slide 66: The best QA strategies employ a combination of tools
	Slide 68: Which tool to use?

