
QA: Analysis Tools
17-313 Spring 202

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Edwardo Feo Flushing

https://cmu-313.github.io/

Learning Goals

• Gain an understanding of the relative strengths and
weaknesses of static and dynamic analysis

• Examine several popular analysis tools and understand their
use cases

• Understand how analysis tools are used in large open-source
software

Administrivia

• EXAM NEXT WEEK!
• Practice exams are posted to slack

• Review session: Saturday @ 1pm in GHC 6115

• Review the previous exams, and bring questions to the review
session

• ODR Requests (should) have been approved

• NOTE: Bonus points for handwritten cheat sheet, but printed is
allowed to be used

• Please review grades on canvas.
• Don’t forget to do the teamwork survey. Participation point.

Software can be hard

• https://www.destroyallsoftware.com/talks/wat

https://www.destroyallsoftware.com/talks/wat

1. static OSStatus

2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4. uint8_t *signature,

5. UInt16 signatureLen) {

6. OSStatus err;

7. .…

8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

9. goto fail;

10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15. …

16.fail:

17. SSLFreeBuffer(&signedHashes);

18. SSLFreeBuffer(&hashCtx);

19. return err;

20.}

1. static OSStatus

2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4. uint8_t *signature,

5. UInt16 signatureLen) {

6. OSStatus err;

7. .…

8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

9. goto fail;

10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15. …

16.fail:

17. SSLFreeBuffer(&signedHashes);

18. SSLFreeBuffer(&hashCtx);

19. return err;

20.}

goto fail;

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

ERROR: function returns with
interrupts disabled!

Twitter’s week year bug

ISO 8601 rule: The first week of the year is the week
containing the first Thursday.
“So if January 1 falls on a Friday, it belongs to the last
week of the previous year. If December 31 falls on a
Wednesday, it belongs to week 01 of the following year.”

DateTimeFormatter.ofPattern("dd MMM YYYY").format(zonedDateTime)

Use yyyy instead of
YYYY

Could you have found them?

• How often would those bugs trigger?

• Driver bug:

• What happens if you return from a driver with interrupts
disabled?

• Consider: that’s one function

• …in a 2000 LOC file

• …in a module with 60,000 LOC

• …IN THE LINUX KERNEL

• Some defects are very difficult to find via testing, inspection.

Defects of interest…

• Are on uncommon or difficult-to-force execution paths. (vs
testing)

• Executing (or interpreting/otherwise analyzing) all paths
concretely to find such defects is infeasible.

• What we really want to do is check the entire possible state
space of the program for particular properties.

• What we CAN do is check an abstract state space of the
program for particular properties.

What is Static Analysis?

• Systematic examination of an abstraction of program state space.

• Does not execute code! (like code review)

• Abstraction: produce a representation of a program that is simpler to
analyze.

• Results in fewer states to explore; makes difficult problems tractable.

• Check if a particular property holds over the entire state space:

• Liveness: “something good eventually happens.”

• Safety: “this bad thing can’t ever happen.”

• Compliance with mechanical design rules.

Activity: Analyze the Python program statically
(Yes/No/Maybe)

def n2s(n: int, b: int):

 if n <= 0: return '0'

 r = ''

 while n > 0:

 u = n % b

 if u >= 10:

 u = chr(ord('A') + u-10)

 n = n // b

 r = str(u) + r

 return r

1. What are the set of data types taken
by variable `u` at any point in the
program?

2. Can the variable `u` be a negative
number?

3. Will this function always return a
value?

4. Can there ever be a division by zero?

5. Will the returned value ever contain a
minus sign ‘-’?

What static analysis can and cannot do

• Type-checking is well established

• Set of data types taken by variables at any point

• Can be used to prevent type errors (e.g. Java) or

warn about potential type errors (e.g. Python)

• Checking for problematic patterns in syntax is

easy and fast

• Is there a comparison of two Java strings using

`==`?

• Is there an array access ̀ a[i]` without an enclosing

bounds check for `i`?

• Reasoning about termination is impossible in

general

• Halting problem

• Reasoning about exact values is hard, but

conservative analysis via abstraction is possible

• Is the bounds check before ̀ a[i]` guaranteeing that

`I` is within bounds?

• Can the divisor ever take on a zero value?

• Could the result of a function call be ̀ 42`?

• Will this multi-threaded program give me a

deterministic result?

• Be prepared for “MAYBE”

• Verifying some advanced properties is possible

but expensive

• CI-based static analysis usually over-approximates

conservatively

The Bad News: Rice’s Theorem
Every static analysis is necessarily incomplete, unsound, undecidable, or
a combination thereof

“Any nontrivial property about the language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

Static Analysis is well suited to detecting certain defects

• Security: Buffer overruns, improperly validated input…

• Memory safety: Null dereference, uninitialized data…

• Resource leaks: Memory, OS resources…

• API Protocols: Device drivers; real time libraries; GUI frameworks

• Exceptions: Arithmetic/library/user-defined

• Encapsulation:
• Accessing internal data, calling private functions…

• Data races:
• Two threads access the same data without synchronization

Static Analysis: Broad classification

• Linters
• Shallow syntax analysis for enforcing code styles and formatting

• Pattern-based bug detectors
• Simple syntax or API-based rules for identifying common programming

mistakes

• Type-annotation validators
• Check conformance to user-defined types

• Types can be complex (e.g., “Nullable”)

• Data-flow analysis / Abstract interpretation)
• Deep program analysis to find complex error conditions (e.g., ”can array

index be out of bounds?”)

Static analysis can be applied to all attributes

• Find bugs

• Refactor code

• Keep your code stylish!

• Identify code smells

• Measure quality

• Find usability and accessibility issues

• Identify bottlenecks and improve performance

Activity: Analyze the Python program dynamically

def n2s(n: int, b: int):

 if n <= 0: return '0'

 r = ''

 while n > 0:

 u = n % b

 if u >= 10:

 u = chr(ord('A') + u-10)

 n = n // b

 r = str(u) + r

 return r

print(n2s(12, 10))

1. What are the set of data types taken
by variable `u` at any point in the
program?

2. Did the variable `u` ever contain a
negative number?

3. For how many iterations did the while
loop execute?

4. Was there ever be a division by zero?

5. Did the returned value ever contain a
minus sign ‘-’?

Dynamic analysis reasons about
program executions
• Tells you properties of the program that were definitely

observed
• Code coverage

• Performance profiling

• Type profiling

• Testing

• In practice, implemented by program instrumentation
• Think “Automated logging”

• Slows down execution speed by a small amount

• Requires only source code

• Conservatively reasons about all possible
inputs and program paths

• Reported warnings may contain false
positives

• Can report all warnings of a particular class
of problems

• Advanced techniques like verification can
prove certain complex properties, but rarely
run in CI due to cost

• Requires successful build + test inputs

• Observes individual executions

• Reported problems are real, as observed by a
witness input

• Can only report problems that are seen. Highly
dependent on test inputs. Subject to false
negatives

• Advanced techniques like symbolic execution
can prove certain complex properties, but
rarely run in CI due to cost

Static Analysis vs Dynamic Analysis

Static Analysis

Tools for Static Analysis

Static analysis is a key part of continuous integration

Static analysis used to be an academic amusement; now
it’s heavily commercialized

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

https://github.com/marketplace

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

Static analysis is also integrated into IDEs

https://clang-analyzer.llvm.org

What makes a good static analysis tool?

• Static analysis should be fast

• Don’t hold up development velocity

• This becomes more important as code scales

• Static analysis should report few false positives

• Otherwise developers will start to ignore warnings and alerts, and quality will decline

• Static analysis should be continuous

• Should be part of your continuous integration pipeline

• Diff-based analysis is even better -- don’t analyse the entire codebase; just the changes

• Static analysis should be informative

• Messages that help the developer to quickly locate and address the issue

• Ideally, it should suggest or automatically apply fixes

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

Lessons for Static Analysis Tools at
Google
• Make It a Compiler Workflow

• Value of compiler checks.

• Reporting issues sooner is
better

• Warn During Code Review

• Engineers working on static
analysis must demonstrate
impact through hard data.

Lessons learned

• Finding bugs is easy

• Most developers will not go
out of their way to use static
analysis tools.

• Developer happiness is key.

• Do not just find bugs, fix
them.

• Crowdsource analysis
development.

(1) Linters: Cheap, fast, and lightweight static source analysis

https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important

Use linters to enforce style guidelines

Don’t rely on manual inspection during code review!

https://checkstyle.sourceforge.io/

Linters use very “shallow” static analysis
to enforce formatting rules
• Ensure proper indentation

• Naming convention

• Line sizes

• Class nesting

• Documenting public functions

• Parenthesis around expressions

• What else?

Use linters to improve maintainability

• Why? We spend more time reading code than writing it.
• Various estimates of the exact %, some as high as 80%

• Code is ownership is usually shared

• The original owner of some code may move on

• Code conventions make it easier for other developers to
quickly understand your code

Use Style Guidelines to facilitate communication

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008

Guidelines are inherently opinionated, but consistency is the important point.

Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008

Take Home Message:
Style is an easy way to improve readability

• Everyone has their own opinion (e.g., tabs vs. spaces)

• Agree to a convention and stick to it
• Use continuous integration to enforce it

• Use automated tools to fix issues in existing code

(2) Patten-based Static Analysis Tools

• Bad Practice

• Correctness

• Performance

• Internationalization

• Malicious Code

• Multithreaded Correctness

• Security

• Dodgy Code

http://findbugs.sourceforge.net/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html

SpotBugs can be extended with plugins

https://find-sec-bugs.github.io/

Bad Practice:

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
System.out.println("x and y are the same!");

} else {
System.out.println("x and y are different!");

}

Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
if (x.equals(y)) {
System.out.println("x and y are the same!");

} else {
System.out.println("x and y are different!");

}

Performance:

public static String repeat(String string, int times)
{
String output = string;
for (int i = 1; i < times; ++i) {

output = output + string;
}
return output;

}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

The method seems to be building a String using concatenation in a loop. In each
iteration, the String is converted to a StringBuffer/StringBuilder, appended to, and
converted back to a String. This can lead to a cost quadratic in the number of
iterations, as the growing string is recopied in each iteration.

public static String repeat(String string, int times)
{
String output = string;
for (int i = 1; i < times; ++i) {

output = output + string;
}
return output;

}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
int length = string.length() * times;
StringBuffer output = new StringBuffer(length);
for (int i = 0; i < times; ++i) {

output.append(string);
}
return output.toString();

}

Challenges

• The analysis must produce zero false positives
• Otherwise developers won’t be able to build the code!

• The analysis needs to be really fast
• Ideally < 100 ms
• If it takes longer, developers will become irritated and lose

productivity

• You can’t just “turn on” a particular check
• Every instance where that check fails will prevent existing code from

building
• There could be thousands of violations for a single check across

large codebases

(3) Use type annotations to detect common errors

• Uses a conservative analysis to prove the absence of certain
defects
• Null pointer errors, uninitialized fields, certain liveness issues,

information leaks, SQL injections, bad regular expressions, incorrect
physical units, bad format strings, …

• C.f. SpotBugs which makes no safety guarantees

• Assuming that code is annotated and those annotations are correct

• Uses annotations to enhance type system

• Example: Java Checker Framework or MyPy

https://checkerframework.org/

Annotations can be applied to types and declarations

// return value
@NonNull String toString() { ... }

// parameter
int compareTo(@NonNull String other) { ... }

// receiver ("this" parameter)
String toString(@Tainted MyClass this) { ... }

Detecting null pointer exceptions

• @Nullable indicates that an expression may be null

• @NonNull indicates that an expression must never be null
• Rarely used because @NonNull is assumed by default

• See documentation for other nullness annotations

• Guarantees that expressions annotated with @NonNull will
never evaluate to null, forbids other expressions from being
dereferenced

https://checkerframework.org/manual/#nullness-annotations

• import org.checkerframework.checker.nullness.qual.*;

• public class NullnessExampleWithWarnings {

• public void example() {

• @NonNull String foo = "foo";

• String bar = null;

• foo = bar;

• }

• }

• import org.checkerframework.checker.nullness.qual.*;

• public class NullnessExampleWithWarnings {

• public void example() {

• @NonNull String foo = "foo";

• String bar = null;

• foo = bar;

• }

• }

@Nullable is applied by
default

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {

@NonNull String foo = "foo";
String bar = null;

foo = bar;
}

}

Error: [assignment.type.incompatible] incompatible types in assignment.
found : @Initialized @Nullable String
required: @UnknownInitialization @NonNull String

@Nullable is applied by
default

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {

@NonNull String foo = "foo";
String bar = null; // @Nullable

if (bar != null) {
foo = bar;

}
}

}

bar is refined to
@NonNull

Is there a bug?

public String getDay(int dayIndex) {
String day = null;
switch (dayIndex) {

case 0: day = "Monday";
case 1: day = "Tuesday";
case 2: day = "Wednesday";
case 3: day = "Thursday";

}
return day;

}

public void example() {
@NonNull String dayName = getDay(4);
System.out.println("Today is " + dayName);

}

public String getDay(int dayIndex) {
String day = null;
switch (dayIndex) {

case 0: day = "Monday";
case 1: day = "Tuesday";
case 2: day = "Wednesday";
case 3: day = "Thursday";

}
return day;

}

public void example() {
@NonNull String dayName = getDay(4);
System.out.println("Today is " + dayName);

}

Is there a bug? Yes.

Error: [return.type.incompatible] incompatible types in return.
type of expression: @Initialized @Nullable String
method return type: @Initialized @NonNull String

https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

Units Checker identifies physical unit
inconsistencies
• Guarantees that operations are performed on the same

kinds and units

• Kind annotations
• @Acceleration, @Angle, @Area, @Current, @Length, @Luminance,

@Mass, @Speed, @Substance, @Temperature, @Time

• SI unit annotation
• @m, @km, @mm, @kg, @mPERs, @mPERs2, @radians, @degrees,

@A, ...

https://www.nist.gov/pml/weights-and-measures/metric-si/si-units

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

}

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

}

@m indicates that x represents meters

To assign a unit, multiply appropriate
unit constant from UnitTools

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

}

@m indicates that x represents meters

To assign a unit, multiply appropriate
unit constant from UnitTools

Does this program compile? No.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

}

Addition and subtraction between
meters and seconds is physically
meaningless

Checker Framework: Limitations

• Can only analyze code that is annotated
• Requires that dependent libraries are also annotated

• Can be tricky, but not impossible, to retrofit annotations into existing
codebases

• Only considers the signature and annotations of methods
• Doesn’t look at the implementation of methods that are being called

• Dynamically generated code
• Spring Framework

• Can produce false positives!
• Byproduct of necessary approximations

Infer: What if we didn’t want annotations?

• Focused on memory safety bugs
• Null pointer dereferences, memory leaks, resource leaks, ...

• Compositional interprocedural reasoning
• Based on separation logic and bi-abduction

• Scalable and fast
• Can run incremental analysis on changed code

• Does not require annotations

• Supports multiple languages
• Java, C, C++, Objective-C
• Programs are compiled to an intermediate representation

https://fbinfer.com/
https://engineering.fb.com/2017/09/06/android/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/

https://fbinfer.com/

Which tool to use?

The best QA strategies employ a combination of tools

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

Which tool to use?

• Depends on use case, available resources

• Linters: Fast, cheap, easy to address issues or set ignore rules

• Pattern-based bugs: Very insightful, need to deal with false positives based
on project domain

• Type-annotation-based checkers: More manual effort required; needs
overall project/team commitment. But good payoff once adopted

• Deep analysis tools: Can find really tricky issues, but can be costly. Might
need some understanding of how the tool works to deal with false positives.

• The best QA strategy involves multiple analysis and testing techniques

	Slide 1: QA: Analysis Tools
	Slide 2: Learning Goals
	Slide 3: Administrivia
	Slide 4: Software can be hard
	Slide 5
	Slide 6
	Slide 7: goto fail;
	Slide 8
	Slide 9: Twitter’s week year bug
	Slide 10: Could you have found them?
	Slide 11
	Slide 12: What is Static Analysis?
	Slide 13: Activity: Analyze the Python program statically (Yes/No/Maybe)
	Slide 14: What static analysis can and cannot do
	Slide 15: The Bad News: Rice’s Theorem Every static analysis is necessarily incomplete, unsound, undecidable, or a combination thereof
	Slide 16: Static Analysis is well suited to detecting certain defects
	Slide 17: Static Analysis: Broad classification
	Slide 18: Static analysis can be applied to all attributes
	Slide 19: Activity: Analyze the Python program dynamically
	Slide 20: Dynamic analysis reasons about program executions
	Slide 21: Static Analysis vs Dynamic Analysis
	Slide 22: Static Analysis
	Slide 23: Tools for Static Analysis
	Slide 24: Static analysis is a key part of continuous integration
	Slide 25: Static analysis used to be an academic amusement; now it’s heavily commercialized
	Slide 26: Static analysis is also integrated into IDEs
	Slide 27: What makes a good static analysis tool?
	Slide 28: Lessons for Static Analysis Tools at Google
	Slide 29: Lessons learned
	Slide 30: (1) Linters: Cheap, fast, and lightweight static source analysis
	Slide 31: Use linters to enforce style guidelines
	Slide 32: Linters use very “shallow” static analysis to enforce formatting rules
	Slide 33: Use linters to improve maintainability
	Slide 34: Use Style Guidelines to facilitate communication
	Slide 35: Take Home Message: Style is an easy way to improve readability
	Slide 36: (2) Patten-based Static Analysis Tools
	Slide 37: SpotBugs can be extended with plugins
	Slide 38: Bad Practice:
	Slide 39: Bad Practice: ES_COMPARING_STRINGS_WITH_EQ Comparing strings with ==
	Slide 40: Performance:
	Slide 41: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 42: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 45: Challenges
	Slide 46: (3) Use type annotations to detect common errors
	Slide 47: Annotations can be applied to types and declarations
	Slide 48: Detecting null pointer exceptions
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Is there a bug?
	Slide 54: Is there a bug? Yes.
	Slide 55
	Slide 56: Units Checker identifies physical unit inconsistencies
	Slide 57
	Slide 58
	Slide 59: Does this program compile?
	Slide 60: Does this program compile? No.
	Slide 61: Checker Framework: Limitations
	Slide 62: Infer: What if we didn’t want annotations?
	Slide 63
	Slide 64
	Slide 65: Which tool to use?
	Slide 66: The best QA strategies employ a combination of tools
	Slide 68: Which tool to use?

