Cl and Deployment

17-313 Spring 2024
Foundations of Software Engineering
https://cmu-313.github.io
Michael Hilton and Eduardo Feo Flushing

Thanks to Jon Bell for slide inspiration:
https://neu-se.github.io/CS4530-Spring-2024/

Software and Societal Carnegle
Systems Department Mellon

Universi

https://cmu-313.github.io/

Administrivia

- Midterm re-grade requests open

« Thursday will be an activity, bring your laptop. If you have

not done recitation, you should do that before Thursday

Review Grades for Midterm 1

Software and Societal ﬁ]/[all'lnegle
Systems Department elion

Universi

st UESUOI Uraw any pict
\usion P\cw] Q f a.'-\
=} &

| OQ () | % 7 \
LVARY w Ely
S

s
) 7
\Qﬂ
(\/F/\ S
1 ¥
0 @ <
(}lﬂiﬁb-(-f«’.&. lﬁ.vw / "
Grmis N

Software and Societal Car 1190‘19
Mellon

Systems Department
University

3
e
U
N\
7

><(
kY

/! I;}:H;\ »

D Software and Societal Carnegie
Systems Department Mellon

University

Review: Continuous Integration

Software and s t | Carnegie
SsD Systems D epar Mellon

Universi

CI/CD Pipeline overview

() ()
Code Edit + Tests Run
_ J _ J
s] N s : N
Code
Deployed Code Merged

- J - J

Software and Societal Carnegle
Systems Department Mellon

Universi

History of Cl

f_:" -2 (1999) Extreme Programming (XP) rule: “Integrate Often”

1 (2000) Martin Fowler posts “Continuous Integration” blog
Cerusecortol (2007) First Cl tool
& Jenkins (2005) Hudson/Jenkins
& Travis €1 (2011) Travis C|

2 (2019)GitHub Actions

Software and Societal g/[alﬁlegle
Systems Department elion

Universi

Observation

Cl helps us catch errors
before others see them

Agile values fast quality feedback loops

* Faster feedback = lower cost to fix bugs

Old feedback loop: infrequently
New feedback loop: continuously

Defect Cost

Feedback loops we’ve covered

Software and Societal Carnegle
Systems Department Mellon

Universi

Example: Some bugs slip through testing,
even in highly-regulated industries

Aviation

After Alaska Airlines planes bump
runway while taking off from
Seattle, a scramble to ‘pull the plug’

By Dominic Gates, The Seattle Times

Updated: February 20,2023

Published: February 20, 2023

“That morning, a software bug in an update to the
DynamicSource tool caused it to provide seriously undervalued
weights for the airplanes.

The Alaska 737 captain said the data was on the order of 20,000
to 30,000 pounds light. With the total weight of those jets at
150,000 to 170,000 pounds, the error was enough to skew the
engine thrust and speed settings.

Both planes headed down the runway with less power and at
lower speed than they should have. And with the jets judged
lighter than they actually were, the pilots rotated too early

Both the Max 9 and 737-900ER have long passenger cabins,
which makes them more vulnerable to a tail strike when the nose
comes up too soon.” ...

D Software and Societal
Systems Depazstnent

Photo: saiters_photography (IG, different plane/airpot)

... “Aquick interim fix proved easy: When operations staff turned
off the automatic uplink of the data to the aircraft and switched
to manual requests “we didn’t have the bug anymore.”

Peyton said his team also checked the integrity of the calculation
itself before lifting the stoppage. All that was accomplished in 20
minutes.

The software code was permanently repaired about five hours
later.

Peyton added that even though the update to the
DynamicSource software had been tested over an extended
period, the bug was missed because it only presented when
many aircraft at the same time were using the system.

Subsequently, a test of the software under high demand was
developed.”

Carnegie
Mellon

Universi

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

Cl is triggered by commits, pull
requests, and other actions

Example: Small scale Cl, with a service like CircleCl, GitHub

Actions or TravisCl
%for Updates

commits code to
GitHub

Developer

) 020
t)
CircleCl Gitl_'h"b TravisCI
Actions

Runs build for each commit

Software and Societa Carnegie
330 SHENE D epar tm Mellon

Universi

Automating Feedback Loops is
Powerful

HOW LONG CAN YOU WORK ON MAKING A ROUTINE. TASK MORE
EFRCIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?

. (ACROSS FIVE YEARS)
Consider tasks that are Y
done by dozens of onr oy DALY WEEKY MONHY YERY
1 5econD ([T oy | 2oums | 0,20 mrj—lums Mm:ll'um 5Ecosnps
developers (e.g e PR
testing/deployment) 30 ccnos | Fizga 5] ome| 2 vons| 2 w30 [2

OIITITm
Mﬂ%‘j 1 MINUTE Sume@”% 1 OAY | 4 Hows | 1 HOwR M'Néms

oI
8 WEEKS

A 5 MmEs |[6] oave| 21 voves | Svows | 2>
SH%-_E 30 MINUTES L] oAv | 2 Houes
1 HOUR [2)oavs| 5 rowes
6 HOURS Coreees|[1] oY

[T] o

Software and Societal Carnegle
Systems Department Mellon

Universi

https://xkcd.com/1205/

Attributes of effective Cl processes

~ Output the full test name

« Policies:
All checks have passed

« Do not allow builds to remain broken for st
a |Ong time [+ (w) Build and Test the Grader [build (push) Successfu... Details

v O Check dist/ [check-dist (push) Successful in 30s Details

« Cl should run for every change

v (@) Build and Test the Grader [test (reference) (push) ... Details

° C | S h O u Id n Ot CO m p | ete Iy re p | a Ce p re - ~ (@) Build and Test the Grader | test (b) (push) Succes... Details 0;
C O m m it te Sti ng ~+ FA Ruild and Tact the Gradar | tact (te-ianara) (nuch) Nataile

» Infrastructure:
° C | S h O u I d b e fa St, p rOVi d i ng fe e d ba C k Tools: extract_features.py: correct define name for AP_RPM_ENABLED

' peterbarker committed 5 days ago X

W it h i n m i n ute S O r h O u rS AP_Mission: prevent use of uninitialised stack data -- 02

, peterbarker committed 5 days ago X

o C | S h O u | d b e re p e ata b | e (d ete rm i n ist i C) AP_HAL_ChibiOS: disable DMA on 12C on bdshot boards to free up DMA ch... --

Q) andyp1per authored and tridge committed 6 days ago X

SITL: Fixed rounding latflng issue when running JSBSim SITL -
:-:) ShivKhanna authored and tridge committed 6 days ago X

AP_HAL_ChibiOS: define skyviper short board names
0 yuri-rage authored and tridge committed 6 days ago X

Software and Societal Cal€
Systems Department Mellon

Universi

Effective Cl processes are run often
enough to reduce debugging effort

* Failed ClI runs indicate a bug was 8 prestodb/ presto © mmmm
introduced, and caughtinthatrun = = wo v

V/ master This patch bumps Alluxio dependency to 2.3.0- ©- #52300 passed 10 hrs 49 min 31 sec
PY M h . @& James Sun 36392a2 2 days ago
ore changes per-Cl run require
| master Handle query level timeouts in Presto on Spark ©- #52287 errored 11 hrs 6 min 44 sec
more manual debugging effort to
gg g | master Fix flaky test for TestTempStorageSingleStrearr -o- #52284 errored 11 hrs 50 min 37 sec
* b | ~ @ Wenlei Xie 193adcd 2 days ago
a S S I g n a e / master Check requirements under try-catch -o- #52283 passed 11 hrs 3 min 20 sec
© Andrii Rosa FFf331f 2 days ago
.
. A S I n | e C h a n e e r— C I r u n master Update TestHiveExternalWorkersQueries to cre -0- #52282 passed 10 hrs 55 min 37 sec
@ Maria Basmanova 746d7b5 2 days ago
] . .
I n O I n tS t h e C u | r I t +/ master Introduce large dictionary mode in SliceDictior o- #52277 passed 10 hrs 43 min 30 sec
@ Maria Basmanova agedo7a 1 2days ago
| master Add Top N queries to TestHiveExternalWorkers(©- #52271 errored 10 hrs 46 min 36 sec
& Maria Basmanova 8b62d43 3days ago
X master Fix client-info test-name output -o- #52266 failed 10 hrs 35 min 49 sec
Leiging Cai 467277a 3daysago
 master Add Thrift transport support for TaskStatus ©- #52263 passed 11 hrs 13 min 42 sec
@ Andrii Rosa fco4719 3days ago
B

Carnegie

Software and Societal
Systems Department Me!lon .
Universi

Effective Cl processes allocate enough resources to

mitigate flaky tests

* Flaky tests might be dependent on timing (failing due to
timeouts)

* Running tests without enough CPU/RAM can resultin
increased flaky failure rates and unreliable builds

CPU 4 and RAM 8GB
CPU 2 and RAM 16GB
CPU 2 and RAM 8GB
CPU 2 and RAM 4GB

Configuration Ranked As
M Best Price

M Best Reliability

M Best Reliability and Price

CPU 1 and RAM 8GB
CPU | and RAM 4GB
CPU 0.5 and RAM 4GB
CPU 0.5 and RAM 2GB
CPU 0.25 and RAM 2GB
CPU 0.1 and RAM 2GB
CPU 0.1 and RAM 1GB

0 5 10 15 20
Number of Projects

Software and Societal Carnegle
Systems Department Mellon

Universi

https://arxiv.org/abs/2310.12132

Cl in practice at Google

 Large scale example: Google TAP
« 50,000 unique changes per-day, 4 billion test cases per-day

 Pre-submit optimization: run fast tests for each individual change (before
code review).
Block merge if they fail.

« Then: run all affected tests; “build cop” monitors and acts immediately to
roll-back or fix

 Build cop monitorsintegration test runs
« Average wait time to submita change: 11 minutes

Software aric Sacietal Carnegle
Systems Department Mellon

Universi

How can we continuously
update our software in
production?

Cloud Computing enables
CD

Cloud
Computing/Deployment
refresher

Many apps rely on common

infrastructure o
« Content delivery network: caches /_H_\

static content “at the edge” (e.g.

cloudflare, Akamai) goptent
« Web servers: Speak HTTP, serve Clients N;'ﬁi

static content, load balance

between app servers (e.g.

haproxy, traefik) S\e/\!\e/grs
« App servers: Runs our application

(e.g. nodejs)
» Misc services: Logging, A

monitoring, firewall Ser'\o/grs

 Database servers: Persistent data

D Software and Societal
Systems Department

What parts of this infrastructure can be shared across
different clients?

Content
Delivery
Network

Client1 App 1

F Web
lg Servers

3
B - :

A & llll
.Illlllll ERT

App
Servers

Database

Software and Societal Car Ileﬂfle
Systems Department Mellon

Universi

What is the infrastructure that needs to
be shared?

« Our apps run on a “tall stack” Middleware Alisle
of dependencies [—

» Traditionally this full stack is
self-managed

* Cloud providers offer products
that manage parts of that Storage Storage
stack for us:

Operating System
Virtualization Virtualization

Physical Server Physical Server

Network Network
« “Infrastructure as a service”
. uPl atform as as ervic e” Physical data center Physical data center
 “Software as a Service” Traditional, on- .
premises computing Platform-as-a-Service

Self-managed Vendor-managed

Software and Societal Carnegle
Systems Department .

Shared infrastructure analogy: Pizza

- Four ways to get pizza: P24 HR A SEnCE

IVI a ke yo u rS e |f, ta ke a n d On-Premises as a service as a service as a service

(Legacy) (1aas) (Paas) (Saas)

bake, delivery, dine out

« Vendor manages different
levels of the stack, achieving
economies of scale

« When would you choose
one over the other?

Cheese

Dining Table Dining Table Dining Table

Drinks

Electric / Gas Electric / Gas Electric / Gas Electric / Gas

Pizza Dough Pizza Dough Pizza Dough

Tomato Sauce Tomato Sauce Tomato Sauce

Toppings Toppings Toppings

o
3 2 =
(1] o 3
& 3 3

0
=
0

F g
) =y
o =
3 o

(@)

)
- - o) =
) - < =
2 3|8 E
o 73

- Made at Home | Take and Bake Pizza Delivery | Dining Out

@ You Manage @ Vendor Manages

Pizza as a Service — by Albert Barron (unlicensed?

| - .
Software and Societal Car negie
Systems Department Mellon

University

Multi-Tenancy creates economies of

scale

At the physical level:
« Multiple customers’ physical machinesin the same data center

« Save on physical costs (centralize power, cooling, security, maintenance)

At the physical server level:
« Multiple customers’virtual machines in the same physical machine

. gavke) on resource costs (utilize marginal computing capacity - CPUs, RAM,
IS

At the application level:
« Multiple customer’s applications hosted in same virtual machine

e Save on resource overhead (eliminate redundant infrastructure like OS)
 “Cloud” is the natural expansion of multi-tenancy at all levels

Carnegie

D Software and Societal
Systems Department

Cloud infrastructure scales elastically

e “Traditional” computing infrastructure requires capital
iInvestment

« “Scaling up” means buying more hardware, or maintaining excess
capacity for when scale is needed

* “Scaling down” means selling hardware, or powering it off

* Cloud computing scales elastically:
 “Scaling up” means allocating more shared resources
« “Scaling down” means releasing resources into a pool
» Billed on consumption (usually per-second, per-minute or per-hour)

Software and Societal Carnegle
Systems Department Mellon

Universi

Cloud services gives on-demand access
to infrastructure, “as a service”

» Vendor provides a service catalog of “X as a service”
abstractions that provide infrastructure as a service

* APl allows us to provision resources on-demand

 Transfers responsibility for managing the underlying
infrastructure to a vendor

Ple_ase give me... API request (and billing info...)

A virtual machine >
A database server
Avideo chatroom . Resources

Carnegie

Software and Societal
Systems Department Me!lon .
Universi

Infrastructure as a Service: Virtual
Machines

e Virtual machines:

Application
* Virtualize a single large server into _
many smaller machines e
« Separates administration OPeraiing System
responsibilities for physical machine Virualization

vs virtual machines

 OS limits resource usage and
guarantees quality per-VM

Physical Server

Storage

« Each VM runs its own OS Network
i ExampleS° Physical data center
» Cloud: Amazon EC2, Google Compute laas Abstracted physical machine
E ng ine, Azure Self-managed Vendor-managed
* On-Premises: VMWare, Proxmox

Software and Societal Carnegle
Systems Department Mellon

Universi

Let's look more closely at this software
stack

* The "instruction set” is
an abstraction of the
underlying hardware

App Dependencies

* The operating system
— e = =

ptr)esents, the Soagne ” Operating System
apstraction + Calls. e e e
[Hardware

————————————

0 0
|| ||)

Carnegie
Mellon

D Software and Societal
Systems Department
Universi

The operating system allows several
apps to share the underlying hardware

Appl App2
Dependencies Dependencies

ISA+OS Calls I I N S S .

Operating System

Hardware

() ememess

- :
- —

A virtual machine allows shared
hardware

Appl App2 Appl App2
Appl App2 Appl App2
Depe Depe Depe Depe
nden nden nden nden
Cies Cies Cies cies I
0Ss1 0S2
Virtual Machine 1 Virtual Machine 2
ISA B B .

Virtual Machine Manager

Hardware

-~ .
\ | —_)

33 Software and Societal Carnegle

Systems Department Me!lon .
Universi

Virtual Machines facilitate multi-
tenancy

« Multi-Tenancy

« Multiple customers sharing same physical machine, oblivious to
each other

* Decouples application from hardware

» virtualization service can provide “live migration” transparent to the
operating system, maximizing utilization

* Faster to provision and release
* VM v. physical machines == ~mins v. ~hours

Software and Societal g/[all'lnegle
Systems Department elion

Universi

Virtual Machines to Containers

« Each VM contains a full operating system
« What if each application could run in the same (overall)
operating system? Why have multiple copies?

« Advantages to smaller apps:
 Faster to copy (and hence provision)
« Consume less storage (base OS images are usually 3-10GB)

Software and Societal Carnegle
Systems Department Mellon

Universi

Containers run layered images,
reducing storage space

FROM node:18-buster-slim
RUN apt-get update && apt-get install python3

° Images are defined kl)lilki)jl.gézf(sjiitiailkl)g}lifk_)iaeligc_)ll/.O—dev libcairo2-dev
programmatically as a series of RON nikdir -p /use/are/app
“build steps” (e.g. Dockerfile) CoRY 1) fuar/are/app
« Each step in the build becomes a RUN mpm ron build
11 ”n CMD ["npm", "start"]
layer Example image specification (Dockerfile)

* Built images can be shared and

Cached Our compiled app
* To run a container, the layers are
linked together with an “overlay” python3, buildessential, =
. pango, cairo, ibjpeg, libgi
f'lesyStem node:18-buster-slim

Carnegie

Software and Societal Viell
Systems Department elion
Universi

Containers run layered images,
reducing storage space

« Many images may share the same lower layers (e.g. OS,
NodeJS, some system dependencies)

 Layers are shared between images

« Multi-tenancy: N running containers only require one copy of
each layer (they are read-only)

Orion’s compiled app Ripley’s compiled app

Orion’s app Ripley’s app

node:18-buster-slim node:18-buster-slim

Carnegie

Software and Societal Viell
Systems Department elion
Universi

A container contains your apps and all
their dependencies

« Each applicationis encapsulated in a “lightweight container,”
includes:
« System libraries (e.g. glibc)
« External dependencies (e.g. nodejs)

« “Lightweight” in that container images are smaller than VM
images - multi tenant containers run in the OS

 Cloud providers offer “containers as a service”
(Amazon ECS Fargate, Azure Kubernetes,
Google Kubernetes)

Software and Soc t | Carnegie
330 Systems D epar artme Mellon’

Universi

A container contains your apps and all

their dependencies
* You might put
several appsin a

. | . Appl App2 Appl App2
single container, poven | I e |l T
together with their o) | P2 Pepend [l pepend
dependenCieS Container 1 Container 2

» Might have only one e e e s

Operating System

copy of shared ——]

dependencies Hardware

O O
| - - ,

Software and Societal Carnegle
Systems Department Mellon

Universi

XaaS: Contalners as a Service

« Vendor supplies an
on-demand instance

. Appl App2 Appl App2
of an operating proe I e |
system o | | [|]
« Eg: Linux version NN S S
- Vendor is free to - e me e s s

implement that
Instance in a way
that optimizes costs
across many clients.

We don’t care what’s under here: it’s an
abstraction!

Carnegie

Software and Societal
Systems Department Me!lon .
Universi

Docker is the prevailing container
platform

* Docker provides a

standardized
. f f r Our Appl App2 Appl App2
inter ace fory | T ol [
container to use [Depend Zii?gsdl‘ [S Ly B

* Many vendors will conirer cotatrer
host your Docker — e e e s —
container

We don’t care what’s under here: it’s an
abstraction!

« An open standard for
containers also exists
(IIOCIII)

Software and Societal Carnegle
Systems Department Mellon

Universi

S3D

Software and Societal
Systems Department

NodeBB / Dockerfile (L] ..

angelaz1 Initial NodeBB Commit b6951a8 - last year L) History

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Blame 25 lines (16 loc) - 485 Bytes Raw B & 2 ~ [
FROM node: lts
RUN mkdir —-p /usr/src/app && \
chown -R node:node /usr/src/app

WORKDIR /fusr/src/app

ARG NODE_ENV
ENV NODE_ENV $NODE_ENV

COPY —--chown=node:node install/package.json /usr/src/app/package.json
USER node

RUN npm install --only=prod && \
npm cache clean ——force

COPY —-chown=node:node . /usr/src/app
ENV NODE_ENV=production \
daemon=false \
silent=false

EXPOSE 4567

CMD test -n "${SETUP}" && ./nodebb setup || node ./nodebb build; node ./nodebb start

Carnegie
Mellon
Universi

Tradeoffs between VMs and Containers

« Performance is comparable

« Each VM has a copy of the OS and libraries
« Higher resource overhead
* Slower to provision
 Support for wider variety of OS'

« Containers are “lightweight”
« Lower resource overhead
 Faster to provision

« Potential for compatibility issues, especially with older software

Software and Societal g/[all'lnegle
Systems Department elion

Universi

Platform-as-a-Service: vendor supplies
OS + middleware

- Middleware is the stuff between our app and .

a user's requests:

« Content delivery networks: Cache static content IIIIII ggmjr‘;
« Web Servers: route client requests to one of our Clients Network
app containers
. . . . Web
 Applicationserver: run our handler functionsin | Servers

response to requests from load balancer

« Monitoring/telemetry:log requests, response
times and errors

Il e
Servers
 Cloud vendors provide managed middleware

platforms too: “Platform as a Service” Monttorna/T @ @ @ Database

elemetry
servers

Software and Societal Car Ile‘Tle
Systems Department Mellon

Universi

Paa$ is often the simplest choice for
app deployment

 Platform-as-a-Service provides components most
aplos need, fully managed by the vendor: load Appiicaton
balancer, monitoring, application server

« Some PaaS run your app in a container: Heroku, AWS
Elastic Beanstalk, Google App Engine, Railway, Vercel...

» Other PaaS run your apps as individual Virualzation

functions/event handlers: aws Lambda, Google Cloud e —
Functions, Azure Functions

« Other PaaSs provide databases and authentication,

and run your functions/event handlers: Google Firebase, Nework
Back4App

Middleware

Operating System

Storage

Physical data center

D Software and Societal
Systems Department

Paa$S in the style of Heroku runs
containers

Takes a web app as input

 Provide an entry point to code, e.g. “npm start”, or optionally, a
container specification

Hosts web app at chosen URL, can scale resources

up/down on-demand HTTP requests
« Load balancer fully managed by Heroku, scaling transparent 1
« Auto-scale down to use no resources, spins up container on
reception of a request Load balancer +
« Dashboard for monitoring/reporting UG eI iTel
« Newcomers provide similar functionality (Vercel, /\
Rallway, etc) Container Container
* Host PaaS on-premises, too (Caprover) Our NodeJSApp Our NodeJS App

D Software and Societal
Systems Department

How to deploy web apps?

) What we need: . . Write some code
« A server that can run our application O

« A network that is configured to route requests from
an address to that server

« Questions to think about:
« What software do we need to run besides our

application code? (Databases, caches, etc?) Copy over (s)FTP
 Where does this server come from? (Buy/Borrow?) Restart server with my changes,
* Who else gets to use this server? (Multi-tenancy or make sure it doesn’t crash

exclusive?)
« Who maintains the server and software? (Updates OS,

libraries, etc?)

Software and Societal vi.}.'l gie
Systems Department Mellon

Universi

Self-managed vs Vendor-managed

« Consider who manages each tier in the stack Application Applcation
 Benefits to vendor-managed options: Middeware Middleware
« More ways to reduce resource consumption, Operating System Operating System
Improve resource utilization
Virtualization Virtualization
« Less management burden
* Less capital investment, more flexibility in scaling Physical Server Physical Server
 Benefits to self-managed options: Storage Storage
 Greater flexibility to migrate between software — N—
platforms
Physical data center Physical data center

 Potentially less operating expenses

Traditional, on-

premises computing SaaS

33 D Software and Societal -
Systems Department Self-managed Vendor-managed
w, Ve

Cloud Infrastructure is best for variable
workloads

« Consider:
« Does your workload benefit from ability to scale up or down?
« Variable workloads have different demands over time (most common)
- Constant workloads require sustained resources (less common)

« Example:
 Need torun 300 VMs, each 4 vCPUs, 16GB RAM

* Private cloud:
 Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

 Public cloud:
« Amazon EC2 Pricing (M7a.xlarge instances, $0.153/VM-hour)
« 10 VMs for 1 year + 290 VMs for 1 month: $45,792.90
« 300 VMs for 1 year: $402,084.00

Carnegie

Software and Societal
Systems Department Me!lon .
Universi

Public clouds are not the only option

e “Public” clouds are connected to the internet and available for
anyone to use

« Examples: Amazon, Azure, Google Cloud, DigitalOcean

* “Private” clouds use cloud technologies with on-premises, self-
managed hardware

 Cost-effectivewhen a large scale of baseline resources are needed

- Example management software: OpenStack, VMWare, Proxmox,
Kubernetes

 “Hybrid” clouds integrate private and public (or multiple public)
clouds

« Effective approach to “burst” capacity from private cloud to public cloud

D Software and Societal
Systems Department

Carnegie

Cloud enables Continuous
Delivery

Continuous Delivery

« “"Faster is safer”. Key values of continuous delivery

 Release frequently, in small batches
- Maintain key performance indicators to evaluate the impact of updates

« Phase roll-outs
 Evaluate business impact of new features

Defect Cost

Carnegie

Software and Societal Viell
Systems Department elion
Universi

Motivating scenario: Failed Deployment at Knight Capital

Knightmare: A DevOps
Cautionary Tale

I was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.
Since that conference I have been asked by several people to share the story through my blog.

This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

This is the story of how a company with nearly $400 million in assets went b

minutes because of a failed deployment.

“In the week before go-live, a Knight engineer manually
deployed the new RLP code in SMARS to its 8 servers. However,
he made a mistake and did not copy the new code to one of the
servers. Knight did not have a second engineer review the
deployment, and neither was there an automated system to
alert anyone to the discrepancy. “

Software and Societal
Systems Department

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?

« Use capture/replay testing instead of driving market
conditionsin a test

 Avoid including “test” code in production deployments
« Automate deployments
* Define and monitor risk-based KPIs

 Create checklists for responding to incidents

Software and Soc t | Carnegie
330 Systems D epar artme Mellon’

Universi

Continuous Delivery I= Immediate Delivery

 Even if you are deploying every day (“continuously”), you still have

some latency
« A new feature | develop today won't be released today

« But, a new feature | develop today can begin the release pipeline

today (minimizes risk)

- Release Engineer: gatekeeper who decides when something is
ready to go out, oversees the actual deployment process

Carnegie

Software and Societal Viell
Systems Department elion
Universi

Split Deployments Mitigate Risk

* |[dea: Deploy to a complete production-like environment, but
don't have users use it, collect preliminary feedback

 Lower risk if a problem occurs in staging than in production

« Examples:
 “Eat your own dogfood”
- Beta/Alpha testers

Old Version

Web Application
Server Server
Web Application Database
Server Server Server

Mew Version

Most users
(95%)

Database
SEMVer

Some users
{5

Carnegie

Software and Societal Viell
Systems Department elion
Universi

Continuous Delivery Leverages Relies
on Staging Environments

Developer
Environments Beta/Dogfooding User Requests

Testing Staging Environment Production Environment

Environment

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

Software and Societal Carnegle
Systems Department Mellon

Universi

Continuous Delivery Tools

« Simplesttools deploy from a branch to a service (e.g. Render.com, Heroku)
« More complex tools:

« Auto-deploys from version control to a staging environment + promotes through
release pipeline

« Monitors key performance indicators to automatically take corrective actions
« Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Find image Cutover Deploy PROD Tear down Destroy
Start from TEST Deploy CANARY manual approval (red/black) CANARY

old PROD

Wait 30 mins Wait 2 hrs

z S ILvvdi C dliu oudLicudl
T P Systems Dapartmenrt

Carnegie
Mellon
Universi

https://spinnaker.io/
https://spinnaker.io/docs/concepts/

Continuous Delivery Relies on Monitoring

« Consider both direct (e.g. business) metrics, and indirect (e.g. system) metrics

Hardware

« Voltages, temperatures, fan speeds, component health
« OS

« Memory usage, swap usage, disk space, CPU load

Middleware

« Memory, thread/db connection pools, connections, response time

Applications
 Business transactions, conversion rate, status of 3rd party components

Carnegie

Software and Societal
Systems Department Me!lon .
Universi

Tools for Monitoring Deployments

* Nagios (c 2002): Agent-based architecture (install agent on each monitored
host), extensible plugins for executing “checks” on hosts

 Track system-level metrics, app-level metrics, user-level KPIs

JéiClﬂGA

Q Q Search... Y
_0{\ ‘%
£22 Dashboard & o « &Q‘\ ({P
6&\} \3‘;’0} (“eo & & & o @ @ ,\a"e’
© Problems = S 9‘;a,bq°&°‘ef & oc;, Qeeb c\oo 606 o‘,c’(& ‘\060000\)09@9 Q}'b@
O NN o S R R D SR MR S
Host Problems OQ\) OQ\) Qé@ @f}. &gi. 6\6) Qé\ ‘(S’& ‘\6&9\&;} @0&@0& é\oq é\oq QGﬂQQ‘OO ‘ﬂ\é "ca\\§ ‘:J\dL 6;&9 é;éo &06&0"&"
Service Problems esxio1
Service Grid esxi02
Current Downtimes esxi03
e esios @ B 0 ee o 0
#'} Overview esxi05
9 History esxioé
. a8 e et . . Carnegie
CJ o gle

Soft & Documentation ibhpe
53 D Syste . Mellon
22 System nagios [] (X X] o0 0006 6 © Universi

Monitoring can help identity operational issues

Overall Cluster Memory Usage

340TB —

3.207TB \
3TB Iﬂ
| r
280TB H
8 ==l

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Overall Cluster CPU Usage

1600 Ghz
1400 Ghz
1200 Ghz -
1000 Ghz

800 Ghz

600 Ghz

400 Ghz i i =N
200 Ghz

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

D Software and Societal
Systems Department

106G

8G

6G

4G

it Active Memory

Lo

_time

_value

_field _measurement fuzzer host target

2022-09-0513:52:00 10.35G active mem

2022-09-05 20:00:00

CPU Usage

40

35

30

25

2022-09-06 08:00:00

2022-09-05 20:00:00

2022-09-06 08:00:00

afiplusplus_with_knobs G4PlusVM136 sqlite3

Carnegie
Mellon

Universi

Continuous Delivery Tools Take Automated Actions

« Example: Automated roll-back of updates at Netflix based on
SPS .

PROD:US-EAST-1
SPS Server Successes (License Requests) SPS Client Successes (Startplays)
s | —
5.0 "—ﬁ ’_:_ﬁ‘_,__J s jLH_J
— ;_4 20.0
 — r—
4.04 — }
| | | |
e - — 15.0- L_—}ﬁ\—(_
3.0 ! \
; -
| 10.0- ‘
2.0 —
1.04 5.0 4
0.0 1 1 1 1 1 1 1 1 0.0 1 1 1 1 1 1 1
10:27 10:30 10:33 10:36 10:39 10:42 10:45 10:48 10:27 10:30 10:33 10:36 10:39 10:42 10:45 10:48
MONITORING!

Software and Carnegle
Systems Department Mellon

Universi

https://www.youtube.com/watch?v=qyzymLlj9ag

rom Monitoring to Observability

Understanding what is going on inside of our deployed systems

17 GKE Enhanced Dashboard v + addwidgets

sCope clust

mespace deployment

- & - - - -

Saved Views - * - * - * - -
| —— s -
et ' e DaemonSets

Example dashboard by DataDog: 027
https://www.datadoghg.com/blog/gke-dashboards-integration-improvements 0.25
-l - 1V: 0.25
- 0.24
node 0
0.24
0.23
60 Deployments Services 0.23
From the control plane to the 0.23
container level, this dashboard 40 0.22

provides you with broad
visibility into the health and
performance of your GKE
clusters so that you can be
better prepared to address
potential issues.

10:30 1

Memory usage by container

CPU usage by container

CPU-intensive n...

gke-demo...
gke-demo...
gke-demo...
gke-demo...

517 559 -

GKE monitoring guides:
+ Monitor GKE with Datadog ' : ! ga &g Tags
+ Datadog Support for GKE o 7 X - hostgke-de
Autopilot b . host:gke-de
g } ’ ﬁl ' '\’;e ‘J" a B hostoke-de
If some graphs appear empty, - o .
check out the following: ey P 5
More v
CPU-intensi...
5.84 user-db-2
v Control Plane pod———
5.17 user-db-3
4.65 user-db-1
For the data in this section to populate you must enable GKE control plane metrics. Control plane metrics give you 447 user-db-0
visibility into the operation of the Kubernetes control plane, which is managed by Google in GKE. 394 user-db-S
3.66 user-db-8
API Server L By Method Controller M Node Coll Scheduler La by Resul 222 EE-7
erver Latency By Metho ontroller Manager Node Collector... cheduler Latency by Result 3.10 mongo-...

n & AR

4h

-« @

1h Past 1 Hour

ON High DensityMode O Events&logs @ & @
Nodes
CPU usage Memory-intensi... Memory usage
1,005 ghe-ka...
o5 980 gke-ka... 1 e ——
Ty uat Ao B0, : 631 gked...
S S - —_—
0 602 gke-us... 0
10:30 1mac 10:30 LAE:
T M., Avg Max Value 563 wm-Bb... T M Avg Max Value
e @V 0.19 027 017 559 gke-d.. h.. av.. 326MIB 367 MIB 320 MiB
h.. av. 021 035 0.16 552 (ghed... h. av.. 395MIB 437ME 411 M8
543 ghked...
h. av. 027 0.42 028 h av. 474 MR 5ZIME 484 MIB
Network errors
1
05
0
10:15 10:30 10:45 11:00 115 10:30 1045 11:00
Metric Avg Max Value Tags Metric Avg Max Value
Receiv... 7T1.81 MiB/s 13338 MiB 75.06 MiB host:gke-demo-1128... Received By. 0 o ']
Receiv.. 114.20 MiB 204.07 MiB 73.33 MiB host:gle-demo-1128 Received By o (i] [i]
Recpiv... 83.81 MiB/s 14068 MiE/s 97.18 MiB/s B hostoke-demo-1128.. Received By] 0 1]
Pods
CPU usage Memory-int.. 4h Memory usage
18.64 produ...
15.29 produ... .
10.89 dsm-d...
10.72 dev-ds...
5.04 user-d. ? == -
4.96 user-d.. '
T M. Avg Max Value 4.75 wuser-d... T M Avg Max Value
[C 63 6.3 14.8 4.67 wser-d... P M 145.2 147.4 144.2...
P € 157 m.. 3BT 14 452 kafia-.. P M. 1434. 1456 1432,

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

New Tools allow Observability inside of Apps, Too

APIModel M Report Alerts Diagn

Project Deploymant
- Staging -
s ; i
Metrlcs & Errors Percentile ime range | Custom
Last updated: 10:56:10 AM P80 pO5 poo pou.d C | Last12 hours -
Request Count Duration (p20)
2% 400ms
. 300ms
® 200ms
500 100ms
Wad 18 03 AM 06 AM 09 AM Wed 18 03 AM 06 AM 09 AM
Search for endpoints
= Filters Clear X < Method Endpoint Status p90 - Count
HTTP Methods (5] o~ EEZED =pistaging akita software/vl/services/{service_id}Ylearn/{learn_session_id}/async_reports [200] 3%0ms 135585 >
=a 19
=3 5 D 10.255.23117:8080/{arg1} zams 10080 >
(=] o
o m api.staging.akita.software/bulk 202 | 0.6ms 6137 >
=2 0 :
POST api.staging.akita.software/v1/services/{service_id}/telemetry/client/deployment/production 200 | 3ms 4608
Endpeint Categories (1) ~ Q
Uncategorized 24 IR 10-255.23117:8080/ [a0] 18ms 4,320

cftwese and Sacieta Carnegle

Systems Department Me!lon .
Universi

https://www.akitasoftware.com/blog-posts/plug-and-play-endpoint-views-for-metrics-errors

Monitoring Services Take Automated Actions

Notifications v G x Notification v C x
; E ICIn GA « 12 3 45 6 7 .. 24 25 » # 25 ~ Sortby Notification Start -~ X Current Service State
’ QSearCh... h g naaqios
Q up P 9
OK . . since 2021-11
o Slurm Nodes on nagios Sent to jon 127.0.041
i22 Dashboard 2022-02-18) 3 9 habl 332 habl
08:49:05 0K - nodes unreachable, reachable oK .
Service: Slurm Nodes
O Problems oK . .) for 1m 52s
Slurm Nodes on nagios Sent to icingaadmin
2022-02-18 OK - 0 nod hable, 332 habl
-) . - nodes unreachable, reachable
i} Overview 08:49:05 .
Event Details
9 Hist Slurm Nodes on nagios Sent to jon o
D Histor
y WARNING - 7 nodes unreachable, 326 reachable Type Notification
Event Grid Start time 2022-02-18 08:42:05
. Slurm Nodes on nagios Sent to icingaadmin End time 2022-02-18 08:42:05
Event Overview WARNING - 7 nodes unreachable, 326 reachable
Reason Normal notification
Notifications
CRITICAL . . .
Slurm Nodes on nagios Sent to icingaadmin State
Timeline 2022°02518 CRITICAL - 65 dg hable, 161 habl o crimeat
08:42:05 = noaes unreacha e, reacha e Escalated NQ
& Documentation 2%21;2(;#\:.8 Slurm Nodes on nagios Sent to jon Contacts notified 2
An. CRITICAL - 65 nodes unreachable, 161 reachable Output
£ System 08:42:05 P CRITICAL - 65 nodes unreachable, 161 reachable
Slurm Nodes on nagios Sent to icingaadmin

#~ Configuration

WARNING - 12 nodes unreachable, 205 reachable
& jon . .
Slurm Nodes on nagios Sent to jon
WARNING - 12 nodes unreachable, 205 reachable
CRITICAL . .)
Slurm Nodes on nagios Sent to icingaadmin
CRITICAL - 204 nodes unreachable, 145 reachable

2022-02-18
08:34:07

Beware of Metrics

 McNamara Fallacy
* Measure whatever can be easily measured
 Disregard that which cannot be measured easily

* Presume that which cannot be measured easily
Is not important

* Presume that which cannot be measured easily
does not exist

D Software and Societal
Systems Department

Deployment Example: Facebook.com

e Pre-2016

-==" When feature is ready, push as 1 change to master branch

&~
~1 week of development
|
|
master branch 1 3 days 4 days All changes that survived stabilizing
| - Reled DI d
; I G
Weekly I i i i
All ch k
¢ angesfrom wee release branch
that are ready for release : : : :
| | | |
\/ \/ \/ \ 4

Software «rf 5¢) tiv2 2| Calneﬂle
Systems Department Mellon

Universi

Deployment Example

il

m mml . 7 4s “Our main goal was to make sure that the

’ » .y - new system made people’s experience
better — or at least, didn't make It worse.
After a year of planning and development,
over the course of three days we enabled
100% of our production web servers to
run code deployed directly from master”

A R~

 Chuck Rossi, Director Software Infrastructure & Release
Engineering @ Facebook

Software and Societal g/[all'lnegle
Systems Department elion

Universi

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Deployment Example

> : h-blocki
° P 100% production ﬁ"uih.?,gcckﬁfm

Crashbot for WWW
Emergency button

2% production Push-blocking alerts
Push-blocking tasks
Emergency button

employees

E
Master

S | I | I Carnegie
SsD Systems Department Me!lon .
University

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Compare Continuous Delivery and TDD

e Test driven development
« Write and maintain tests per-feature
 Unit tests help locate bugs (at unit level)

* Integration/system tests also needed to locate interaction-related
faults

« Continuous delivery
« Write and maintain high-level observability metrics

« Deploy features one-at-a-time, look for canaries in metrics
- Write fewer integration/system tests

Software and Societal g/[all'lnegle
Systems Department elion

Universi

	Slide 1: CI and Deployment
	Slide 2: Administrivia
	Slide 3
	Slide 4
	Slide 5: Review: Continuous Integration
	Slide 6: CI/CD Pipeline overview
	Slide 7: History of CI
	Slide 8: Observation
	Slide 12: Agile values fast quality feedback loops
	Slide 13: Example: Some bugs slip through testing, even in highly-regulated industries
	Slide 14: CI is triggered by commits, pull requests, and other actions
	Slide 16: Automating Feedback Loops is Powerful
	Slide 17: Attributes of effective CI processes
	Slide 18: Effective CI processes are run often enough to reduce debugging effort
	Slide 19: Effective CI processes allocate enough resources to mitigate flaky tests
	Slide 20: CI in practice at Google
	Slide 21: How can we continuously update our software in production?
	Slide 22: Cloud Computing enables CD
	Slide 23: Cloud Computing/Deployment refresher
	Slide 24: Many apps rely on common infrastructure
	Slide 25: What parts of this infrastructure can be shared across different clients?
	Slide 26: What is the infrastructure that needs to be shared?
	Slide 27: Shared infrastructure analogy: Pizza
	Slide 28: Multi-Tenancy creates economies of scale
	Slide 29: Cloud infrastructure scales elastically
	Slide 30: Cloud services gives on-demand access to infrastructure, “as a service”
	Slide 31: Infrastructure as a Service: Virtual Machines
	Slide 32: Let’s look more closely at this software stack
	Slide 33: The operating system allows several apps to share the underlying hardware
	Slide 34: A virtual machine allows shared hardware
	Slide 35: Virtual Machines facilitate multi-tenancy
	Slide 36: Virtual Machines to Containers
	Slide 37: Containers run layered images, reducing storage space
	Slide 38: Containers run layered images, reducing storage space
	Slide 39: A container contains your apps and all their dependencies
	Slide 40: A container contains your apps and all their dependencies
	Slide 41: XaaS: Containers as a Service
	Slide 42: Docker is the prevailing container platform
	Slide 43
	Slide 44: Tradeoffs between VMs and Containers
	Slide 45: Platform-as-a-Service: vendor supplies OS + middleware
	Slide 46: PaaS is often the simplest choice for app deployment
	Slide 47: PaaS in the style of Heroku runs containers
	Slide 48: How to deploy web apps?
	Slide 49: Self-managed vs Vendor-managed Infrastructure
	Slide 50: Cloud Infrastructure is best for variable workloads
	Slide 51: Public clouds are not the only option
	Slide 52: Cloud enables Continuous Delivery
	Slide 53: Continuous Delivery
	Slide 54: Motivating scenario: Failed Deployment at Knight Capital
	Slide 55: What could Knight capital have done better?
	Slide 56: Continuous Delivery != Immediate Delivery
	Slide 57: Split Deployments Mitigate Risk
	Slide 58: Continuous Delivery Leverages Relies on Staging Environments
	Slide 59: Continuous Delivery Tools
	Slide 62: Continuous Delivery Relies on Monitoring
	Slide 63: Tools for Monitoring Deployments
	Slide 64: Monitoring can help identify operational issues
	Slide 65: Continuous Delivery Tools Take Automated Actions
	Slide 66: From Monitoring to Observability
	Slide 67: New Tools allow Observability inside of Apps, Too
	Slide 68: Monitoring Services Take Automated Actions
	Slide 69: Beware of Metrics
	Slide 70: Deployment Example: Facebook.com
	Slide 71: Deployment Example
	Slide 72: Deployment Example
	Slide 73: Compare Continuous Delivery and TDD

