Software Quality

17-313 Spring 2024
Foundations of Software Engineering
https://cmu-313.github.io
Michael Hilton and Eduardo Feo Flushing

Sources:
e Effective Software Testing: A developer's guide. Maurizio Aniche
e Software Quality and Testing - TU Delft
e Introduction to Combinatorial Testing. Rick Kuhn
e Managing Technical Debt. Ipek Ozkaya. CMU SEl

Software and Societa g/[arnegle
Systems Department ellon

Universi

https://cmu-313.github.io/

Administrivia

« Reminder: Fill out the post survey for feedback

Smoking Section

el ast two full rows

DESIGNATED
SMOKING
AREA

Softwa
3 Systems Dep ttttttt

Learning Goals

Understand the concepts of software quality and technical
debt

Reflect on personal experiences of technical debt

Learn best practices for proactively ensuring quality

Learn techniques for creating functional tests

Explain the importance of technical debt management
Learn techniques for managing technical debt

Software and Societa g/[all'flegle
Systems Department elion

Universi

Software Quality

Carnegie
Soft and Soc t (<]
SSD Syste twm Depar tm Mellon

Universi

Internal Quality External Quality

e |s the code well structured? Does the software crash?
e |s the code understandable? * Does it meet the requirements?
e How well documented? * Is the Ul well designed?

Software and Societa Carnegie
Systems Department Mellort

Universi

902020, Or89360460, 0ypa "0
20, 60, 0rasy 2y
=

Testing

Assuring external quality M EERSE Raduny

s kit |

83 Software and Societa Carnegie

Systems Department Me!lon _
Universi

Terminology

Failure:

“Deviation of the component or system
from its expected delivery, service or
result”

“Manifested inability of a system to
perform required function”

Software and Societa g/[all'flegle
Systems Department elion

Universi

Terminology

Fault / Defect:

“Flaw in component or system that can cause the component or
system to fail to perform its required function”

“A defect, if encountered during execution, may cause a failure of
the component or system”

Software and Societa g/[all'flegle
Systems Department elion

Universi

Terminology

Error:

“A human action that produces an incorrect result”

Software and Societa E/[all'flegle
Systems Department elion

Universi

Terminology

Failure:

Manifested inability of a system to perform
required function.

Defect (fault):)
missing / incorrect code
: > Bug
Error (mistake)
human action producing fault
And thus:

Testing: Attempt to trigger failures
Debugging: Attempt to find faults given a failure

Software and Societa g/[arnegle
Systems Department ellon

Universi

Principles of Testing #1:
Avoid the absence of defects tallacy

Testing shows the presence of defects

Testing does not show the absence of defects!
“no test team can achieve 100% defect detection |
effectiveness” ik

Effective Software Testing: A developer's guide. Maurizio Aniche

Software and Societa E/[arnegle
Systems Department ellon

Universi

Principles of Testing #2:
Exhaustive testing is impossible

1 def is_valid_email(email: str) -> bool:

7,
=
o A simple function. 1 All oceans dry All tests done
i . ! ~8 billion years
Input, string, max. 26 All plants dead
lowercase characters @
Life Cycle
+ Symb0|s (@) RS B J _) of the Sun - Gradual| Warming
o Assumewecanuse|l IR B QJQ Bl N R .
. 21 _
Zetta FLOPS 10 Birth 1 2 3 4 3 6 7 8 9
teStS per Second In Billions of Years (approx.)

Effective Software Testing: A developer's guide. Maurizio Aniche

Software and Societa (I\]/[all'flegle
Systems Department elion

Universi

Principles of Testing #3:
Start testing early

. To let tests guide design

. To get feedback as early as possible

. To find bugs when they are cheapest to fix

- To find bugs when have caused least damage

Effective Software Testing: A developer's guide. Maurizio Aniche

Carnegie
Soft and Soc t (<]
SSD Syste twm Depar tm Mellon

Universi

Principles of Testing #4:
Defects are usually clustered

“Hot” components requiring frequent change, bad habits,
poor developers, tricky logic, business uncertainty,
innovative, size, ...

Use as heuristic to focus test effort

Effective Software Testing: A developer's guide. Maurizio Aniche

Software and Societa g/[all'flegle
Systems Department elion

Universi

Principles of Testing #5:
The pesticide paradox

“Every method you use to prevent or find bugs leaves a residue of
subtler bugs against which those methods are ineffectual.”

Re-running the same test suite again and again on a
changing program gives a false sense of security
Variation in testing

Effective Software Testing: A developer's guide. Maurizio Aniche

Software and Societa g/[all'flegle
Systems Department elion

Universi

Principles of Testing #6:
Testing is context-dependent

HANDS-ON
MOBILE APP

TESTING HOW SAFE IS
SAFE ENOUGH?

Measuring and Predicting TESTING
Autonomous Vehicle Safety , ALL IN ONE

lllllll

Software and Societa A, “ S E/[alﬁlegle
Systems Department ellon
Universi

Principles of Testing #7:
Verification is not validation

Verification

VERIFICATION VALIDATION

Does the software system meet the
requirements specifications?
Are we building the software right?

Validation

Does the software system meet the
user's real needs?
Are we building the right software?

Credit: Philip Koopman
Effective Software Testing: A developer's guide. Maurizio Aniche

Software and Societa g/[all'flegle
Systems Department elion

Universi

How to create tests?

Test design techniques

« Opportunistic/exploratory testing: Add some unit tests, without much
planning
- Specification-based testing ("black box"): Derive test cases from
specifications
« Boundary value analysis
« Equivalence classes
« Combinatorial testing
« Random testing
» Structural testing ("white box"): Derive test cases to cover implementation
paths
« Line coverage, branch coverage

Software and Societa g/[all'flegle
Systems Department elion

Universi

Specification Testing

Tests are based on the specification
Advantages:

Avoids implementation bias

Robust to changes in the implementation

Tests don't require familiarity with the code

Tests can be developed before the implementation

Software and Societa Carnegle
Systems Department Mellon

Universi

min

1
2 Compute the price of a bus ride:

3 - Children under 2 ride for free.

4 - Children under 18 and senior citizens over 65 pay half the fare
5 - All others pay the full fare of $3.

6 - On weekdays (Monday to Friday), between 7am and 9am and

[; between 4pm and 6pm, a peak surcharge of $1.5 is added

8 to the fare.

9 - During weekends (Saturday and Sunday), there is a flat rate

10 of $2 for all riders, except for children under 2.

i | - Short trips under 5 minutes during off-peak times are free,

12 except on weekends.

13 - If the trip occurs on a public holiday, a special holiday surcharge
14 of $2 is added, ignoring other surcharges and the weekend flat rate.
15 | """

16 def bus_ticket_price(age: int,

17 ride_datetime: datetime,

18 ride_duration: int,

19 is_public_holiday: bool) -> float:

20

Software and Societa g/[all';legle
Systems Department elion

University

What about exhaustive testing?

Idea: Try all values!

age:int (2-117)years

. datetime: DateTime (hh:mm + M/D/Y)
rideTime: int (in minutes, 1 - 2 Hours)
is_public_holiday: bool (2 values)

116 x 1440 (minutes per day) x 1826 (days in the next 5 years)
X 120 (ride time) x 2

~ 72 Billion test cases

(Carnegie
Soft and Soc t (<]
SSD Syste th Depar tm Mellon

Universi

What about exhaustive testing?

Exhaustive testing is usually impractical - even for trivially
small problem

Key problem: choosing test suite

Small enough to finish in a useful amount of time
Large enough to provide a useful amount of validation

Alternative: Heuristics

Software and Societa g/[all'flegle
Systems Department elion

Universi

Equivalence Partitioning

Identify sets with same behavior (equivalence class)
Try one input from each set

Equivalence classes derived from specifications (e.g.,
cases, input ranges, error conditions, fault models)
Requires domain-knowledge

Software and Societa g/[all'flegle
Systems Department elion

Universi

Example: Equivalence Classes?

S3D

| 1
)
3

O 00 N O U1

10
11
12
15
14
15
16
17
18
19
20

min

Compute the price of a bus ride:

mmn

Children under 2 ride for free.

Children under 18 and senior citizens over 65 pay half the fare
All others pay the full fare of $3.

On weekdays (Monday to Friday), between 7am and 9am and

between 4pm and 6pm, a peak surcharge of $1.5 is added

to the fare.

During weekends (Saturday and Sunday), there is a flat rate

of $2 for all riders, except for children under 2.

Short trips under 5 minutes during off-peak times are free,
except on weekends.

If the trip occurs on a public holiday, a special holiday surcharge

of $2 is added, ignoring other surcharges and the weekend flat rate.

def bus_ticket_price(age: int,

ride_datetime: datetime,
ride_duration: int,
is_public_holiday: bool) -> float:

Software and Societa
Systems Department

Carnegie
Mellon
Universi

The category-partition method

ldentify the parameters

The domains of each parameter
From the specs
Not from the specs

Add constraints (minimize)
Remove invalid combinations

Reduce number of exceptional behaviors
Generate combinations

Software and Societa
Systems Department

Carnegie
Mellon

Universi

1

14
15

The category-partition method

mon

Compute the price of a bus ride:

mmn

Children under 2 ride for free.

Children under 18 and senior citizens over 65 pay half the fare
All others pay the full fare of $3.

On weekdays (Monday to Friday), between 7am and 9am and

between 4pm and 6pm, a peak surcharge of $1.5 is added

to the fare.

During weekends (Saturday and Sunday), there is a flat rate

of $2 for all riders, except for children under 2.

Short trips under 5 minutes during off-peak times are free,
except on weekends.

If the trip occurs on a public holiday, a special holiday surcharge

of $2 is added, ignoring other surcharges and the weekend flat rate.

16 def bus_ticket_price(age: int,

17
18
19
20

ride_datetime: datetime,
ride_duration: int,
is_public_holiday: bool) -> float:

Software and Societa
Systems Department

Variable Domains

age <2,[217],
[18,65], >65

ride_datetime weekdays peak
and off-peak,
weekends peak
and off-peak

ride_duration <5, >=5

is_public_holiday | F, T

Carnegie
Mellon
Universi

Boundary-value analysis

Key Insight: Errors often occur at the boundaries of a variable
value

For each variable, select:
minimum,
min+1,
medium,
max-1,
maximum:;
possibly also invalid values min-1, max+1

Software and Societa g/[all'flegle
Systems Department elion

Universi

Boundary-value analysis

1 mow
2 Compute the price of a bus ride:

3 - Children under 2 ride for free.

4 - Children under 18 and senior citizens over 65 pay half the fare

5 - All others pay the full fare of $3. Variable Domains

6 - On weekdays (Monday to Friday), between 7am and 9am and

7 between 4pm and 6pm, a peak surcharge of $1.5 is added age <2, [2,17],

8 to the fare. [18,65], >65

9 - During weekends (Saturday and Sunday), there is a flat rate

10 of $2 for all riders, except for children under 2. ride_datetime weekdays peak
i | - Short trips under 5 minutes during off-peak times are free, and off-peak,
12 except on weekends. weekends peak
13 - If the trip occurs on a public holiday, a special holiday surcharge and off-peak
14 of $2 is added, ignoring other surcharges and the weekend flat rate.

15 | e

16 def bus_ticket_price(age: int, ride_duration <5, >=5

17 ride_datetime: datetime,

18 ride_duration: int, is_public_holiday | F, T

19 is_public_holiday: bool) -> float:

20

Software and Societa E/[all'lnegle
Systems Department elion

Universi

Pairwise testing

Key Insight: some problems only occur as the result of
an interaction between parameters/components

Examples of interactions:
- The bug occurs for senior citizens traveling on weekends (pairwise

interaction)
The bug occurs for senior citizens traveling on weekends during peak

hours (3-way interaction)
The bug occurs for adults traveling long trips during public holidays
that are weekends. (4-way interaction)

- Claim: Considering pairwise interactions finds about 50%

to 90% of defects

Carnegie

Software and Societa Mell
Systems Department ellon
Universi

When to create and run tests?

The V-Model

Requirements System validation plan System testing /

analysis testing in production

N\ Z

Architectural design === * s rerrerevceen Integration testing
: Unit test plan))
Low-level design fp-==r=ccee Unit testing

Implementation

 /

time

Software and Societa g/[arnegle
Systems Department ellon

Universi

Test Driven Development

Tests fi,stt . oo —Repeal- — — 1

Test
succeeds

Popular agile technique
Write tests as specifications before code
Never write code without a failing test

Claims:

fails

Design approach toward testable design
Avoid writing unneeded code

|
|
|
|
|
|
|
|
|
|
|
|
|
Higher product quality (e.g. better code, :
|
|

less defects)
Higher test suite quality putess
Higher overall productivity

Software and Societa 1E]/[Eall'negle
Systems Department ellon

Universi

Group Activity:

Use specification testing to create a test suite for the
bus_ticket_price example

Explain the heuristics you use to create your test cases
BONUS: Test the prograr‘n and find some bugs!

https://bit.ly/CMU313-activity

Software and Societa E/[alﬁlegle
Systems Department elion

Universi

T DON'T
UNDERSTAND
WHY IT TAKES
50 LONG To
ADD A NEW
WINDOW.

TeCHNICAL DEBT

Technical Debt

Software and Societa Carnegie
Systems Department Mellon

Universi

Technical debt

Any software system has
a certain amount of
essential complexity

Cruft causes changes
required to do its job...

to take more effort

a4 44
& &

... but most systems
contain cruft that makes it
harder to understand.

The technical debt metaphor treats the
cruft as a debt, whose interest payments
are the extra effort these changes require.

https://martinfowler.com/bliki/TechnicalDebt.htm/

Software and Societa Carnegle
Systems Department

Mellon
University

Internal quality makes it easier to add
features

If we compare one
system with o lot of
cruft...

the cruft means new features
take longer to build

4200008 CL008 908 oo
S

this extra time and effort is
the cost of the cruft, paid
with each new feature

LR 2 2 o S e o
Yr+t bt oh s
L g 8 28 o 8 2 2
Lo g e o g
R e 2R o SR
e TR,

+
+
>
+
*
-
+
-
+

T rerth ettt H
S AR = S8 L S S

*

...to an equivalent

one without SUee 90 09 08

free of cruft, features can be
added more quickly

Carnegie

Software and Societa
83 Mellors

Systems Department g .
Universi

Technical Debt != Bad Internal Quality

“In software-intensive systems, technical debt consists of
design or implementation constructs that are
expedient in the short term but that set up a technical
context that can make a future change more costly or
impossible. “

“Technical debt is a _contingent ligbility whose impact is
limited to internal sb;{s;em qualities - primarily, but
not only, maintainability and evolvability.”

Managing Technical Debt: Reducing Friction in Software Development. Philippe Kruchten, Robert Nord, Ipek Ozkaya

Carnegie

Software and Societa
Systems Department

High internal quality is an investment

A

high internal quality

cumulative
functionality

but delivers more rapidly
(and cheaply) later

software with high internal
quality gets a short initial
slow down '

low internal quality

|
|
|
| time

this point occurs in
weeks (not months)

Software and Societa
Systems Department

Carnegie
Mellor
Universi

What actions cause technical debt?

Tightly-coupled components Lack of automated testing
Poorly-specified requirements Lack of knowledge
Business pressure Lack of ownership

Lack of process Delayed refactoring

Lack of documentation Multiple, long-lived

development branches

(Carnegie
Software and Soc t <]
S3D <eincoeparme Mellory

Universi

Bitrot: Even if your software doesn't
change, it will break over time

Software and Societa Carnegie
Systems Department N[e!lon2 .
Universi

EVERYONE
CREATES TECHNICAL
DEBT

Bad: Too much technical debt

* Bad code can be demoralizing

* Conversations with the client become awkward
* Team infighting

* Turnover and attrition

* Development speed

Software and Societa
Systems Department

I'Mm OKAY WITH THe ||

eveNTsS THAT ARe |
UNFOLDING
CURRENTLY.

THAT'S OKAY,THINGS
ARe GOING TO Be

How to manage technical debt?

Managing Technical Debt: Reducing Friction in Software Development.
Philippe Kruchten, Robert Nord, Ipek Ozkaya

Principles of Technical Debt
Management

1. Technical debt is a useful rhetorical concept for dialogue.

2. If you do not incur any form of interest, then you probably do
not have actual technical debt.

All systems have technical debt.

Technical debt must trace to the system.

Technical debt is not synonymous with bad quality.
Architecture technical debt has the highest cost of ownership.
All code matters!

Technical debt has no absolute measure.

Technical debt depends on the future evolution of the system.

© O N o 0 bk ow

Software and Societa g/[all'flegle
Systems Department elion

Universi

When should we reduce technical
debt?

&

Technical Debt Net Liability

Technical Debt Net Asset

ecHN!

Occurrence Awareness Tipping Point Remediation
v v v v
>
T T2 T3 T4 Time
- J _ J\. o
Y A Y
BLISSFUL IGNORANCE) SUFFERING FROM DEBT DEBT-FREE
Y

GETTING VALUE OUT OF DEBT

Managing technical debt

Organizations needs to address the following challenges
continuously:

Recognizing technical debt

Making technical debt visible

Deciding when and how to resolve debt
Living with technical debt

1.
2.
3.
4.

Carnegie
Soft and Soc t (<]
SSD Syste twm Depar tm Mellon

Universi

Not all technical debt is the same

Reckless Prudent
: “‘We don’t have time for E mu St Silp (DL S
Deliberate o deal with consequences
design !
(later)

“Now we know how we

113 J - ?!i
Inadvertent What’s layering: should have done it”

https:/Imartinfowler.com/bliki/TechnicalDebtQuadrant.html

Software and Societa g/[all'flegle
Systems Department ellorY

Universi

Group Activity

Describe two plausible examples of technical debt in the midterm
scenario (VisionPlay).

. Deliberate, prudent
.. Reckless, inadvertent

Discuss the reason for incurring debt (e.g., value added?) and the
debt payback strategy

Carnegie

Software and Societa Mell
Systems Department elion
Universi

How can we avoid (inadvertent)
technical debt?

Common Anti-Patterns

* Not having a QA process! Or no-one follows it

Software and Societa 1E]/[Ealll'lnegle
Systems Department ello®

Universi

Common Anti-Patterns

* Not having a QA process! Or no-one follows it é

* Bad version control practices

* Everyone commits to the main branch

CREATED MAIN LOOP & TIMING CONTROL. v
* Long-lived feature branches BYELED CNFGFLE FRSNG
CODE ADDITIONS/EDITS
MORE. CODE
. Huge PRs HERE HAVE CODE.

ADKFJISLKDFISDKLET
MY HANDS ARE TYPING WORDS
HARARARAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT'
MESSAGES GET LESS AND LESS INFORMATIVE.

Software and Societa g/[all'flegle
Systems Department ellony

Universi

Common Anti-Patterns

* Not having a QA process! Or no-one follows it
* Bad version control practices
* Slow and encumbering QA processes

* changes take forever to get merged

* time could be better spent on new features

Software and Societa g/[all'flegle
Systems Department ellory

Universi

Common Anti-Patterns

* Not having a QA process! Or no-one follows it
* Bad version control practices -
* Slow and encumbering QA processes y v
* Reliance on repetitive manual labor

* focused on superficial problems rather than structuralones °=

FORGET THINGS IN SECONDS, AND
ARE ALL PRETTY SURE WE ARE
WAY ABOVE AVERAGE

* results may vary (e.g., manual testing)

* mistakes will happen!

Software and Societa g/[all';legle
Systems Department ellor¥

University

Case Study: Knight Capital

Knightmare: A DevOps
Cautionary Tale

I was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.

Since that conference I have been asked by several people to share the story through my blog.

This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

In layman's terms, Knight Capital Group realized a $460 million loss in 45-minutes.
Remember, Knight only has $365 million in cash and equivalents. In 45-minutes Knight
went from being the largest trader in US equities and a major market maker in the

NYSE and NASDAQ to bankrupt.

Carnegie

Software and Societa Mellors
Systems Department ellony’
Universi

