Open Source

17-313 Spring 2024
Foundations of Software Engineering

https://cmu-313.github.io
Michael Hilton and Eduardo Feo Flushing

Carnegie

Mellon
University

https://cmu-313.github.io/

Administrivia

e P4 Clarification
« Midterm 2 review session in recitation 4/15

« Final Exam attendance Mandatory:
« Monday, April 29, 2024 05:30pm-08:30pm

 If you will be celebrating Passover, let us know ASAP to support
alternatives.

« Conflicts come talk to us as well

Carnegie

Mellon
University

Learning Goals

* Distinguish between open-source software, free software, and commercial
software.

* I|dentify the common types of software licenses and their implications.
* Distinguish between copyrightand intellectual property.

* Express an educated opinion on the philosophical/political debate between
open source and proprietary principles.

* Describe how open-source ecosystemswork and evolve, in terms of
maintainers, community contribution,and commercial backing

* |dentify various concerns of commercial entities in leveraging open-source,
as well as strategies to mitigate these.

Carnegie

Mellon
University

Background: laws and open source

« Copyright protects creative, intellectual and artistic works —
including software

 Alternative: public domain (nobody may claim exclusive
property rights)

» Trademark protects the name and logo of a product

« OSS is generally copyrighted, with copyright retained by
contributors or assigned to entity that maintains it

« Copyright holder can grant a license for use, placing
restrictions on how it can be used (perhaps for a fee)

Carnegie

Mellon
University

S3D

https://xkcd.com/2347/

ALL MODERN DIGITAL
INFRASTRUCTURE

-

ﬁ i

.

]

i

X

A PROTECT SOME
RANDOM PERSON

IN NEBRASKA HAS
BEEN THANKLESSLY

MAINTAINING
SINCE 2003

Carnegie
Me! lon
University

What is Open-Source
Software?

Open-source Proprietary

D Uber

-- o' TikTok
NETFLIX

What is Open-Source Software (OSS)?

« Source code availability
 Right to modify and creative derivative works
« (Often) Right to redistribute derivate works

Carnegie

Mellon
University

Contrast with proprietary software: a black box

 |Intentionis to be used, not examined, inspected, or
modified.

* No source code - only download a binary (e.g., an app) or
use via the internet (e.g., a web service).

« Often contains an End User License Agreement (EULA)
governing rights and liabilities.

« EULAs may specifically prohibit attempts to understand
applicationinternals.

Carnegie
Mellon

University

Example: Bank app
on my phone

S3D

@4 H65%

n End User License Agreement

1. Grant of License

The Licensor hereby grants you limited,
personal, non-exclusive, non-transferable,
revocable license to install the Application on
your mobile device for your personal use. You
may not (and shall not permit or assist any third
party to): (i) copy (except as expressly permitted
by this License), decompile, reverse engineer,
disassemble, attempt to derive the source code,
modify, or create derivative works of the
Application, any updates, or any part thereof; (ii)
rent, lease, lend, sell, redistribute or sublicense
the Application; (i) use the application in any
manner that could damage, disable, overburden,
or impair the Application (or any server or
networks connected to the Application) or
interfere with any third party’s use and/or
enjoyment of the Application (or any server or
networks connected to the Application); (iv)
intentionality interfere with or circumvent the
Application’s security features; (v) use, test or
otherwise utilize the Application in any manner
for purposes of developing or implementing any
method or software that is intended to monitor
or interfere (including intercept or capture data)
with the functioning of the Application (or any
server or networks connected to the
Application); or (vi) otherwise use the
Application in any unlawful manner, for any
unlawful purpose or in any other manner not
expressly granted in this License. The terms of
this License will govern any updates provided by
the Licensor that replace and/or supplement the
original Application.

Any open source software that may be

Decline Accept

¥ .4 865%

n End User License Agreement

Any open source software that may be
accompanying the Application is provided to
you under the terms of such open source
license agreement. This License does not apply
to any such open source software
accompanying the Application, except as
expressly stated herein.

2. Ownership

The software, content, visual interfaces,
interactive features, information, graphics,
design, compilation, computer code and all
other elements of the Applications (the
“Materials”) are protected by intellectual
property rights—including copyright, trade dress,
patent, trade secret and trademark laws of the
United States, other jurisdictions, and
international conventions, and all other
applicable laws (collectively, “Applicable
Intellectual Property Laws”). All Materials are
the property of the Licensor or its subsidiaries
or affiliated companies and/or third-party
licensors. The Licensor reserves all rights not
expressly granted in this License. You shall not
acquire any right, title or interest to the
Materials, whether by implication, estoppel, or
otherwise, except for the limited rights set forth
in this License. You hereby agree to abide by all
Applicable Intellectual Property Laws.

3. Privacy and Consent to Use of Data

You agree that the Licensor, its affiliates, and
their corresponding service providers may
collect, maintain, and use technical data and
related information about you and your device

Decline Accept

Carnegie
Mellon
University

Early open source: UNIX to BSD

- Hardware was not yet standardized, computer vendors focused
on hardware, building new operating sys]

« Much software development focused in
academic labs, and AT&T’s Bell Labs

« Unix created at Bell Labs using the new,
portable Ian%uage “C", licenses initially
released with source code

« 1978:. UC Berkelegl begins distributing
their own derive ' D)

——

version of Unix (B

« AT&T is prohibited from entering new
telecommunications businesses
(can’'t make OS a product)

/
LCarnegie

S3D Mellan

The BSD License is Permissive

* Authors of BSD created a license for the OS that:
1. Required those using it to credit the university
2. Limited liability for (mis)-use

Copyright(c) <year>, <copyright holder> All rightsreserved.

Redistributionanduse in source and binary forms, with or without modification, are permitted provided thatthe following co nditionsare met:

1.Redistributionsof source code mustretain the above copyright notice, this list of conditions and the following disclaimer.

2 Redistributionsin binary form mustreproducethe abovecopyright notice, this list of conditions andthe following disclaimerinthe documentation and/or other materials provided with the distribution.

3.All advertising materials mentioning features or use of thissoftware must display the following acknowledgement: T his productindudes software developed by the <copyright holder>.

4 Neitherthe name of the <copyright holder> northe names of itscontributorsmay be used to endorse or promote productsderived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> ASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.... (move waivers of liability)

Original BSD license

Security policy Loaded : Quarantine policy (Quarantine)
opyright (c) 1982, 1986, 1989, 1991, 1993

The Regents of the University of California. ALl rights reserved.

AC Framework successfully initialized
1sing 16384 buffer headers and 10240 cluster 10 buffer headers . .
ppleKeyStore starting (BUILT: Sep 19 2014 00:11:30) Eﬂ,‘lﬁ‘:ﬁw

University

UNIX to GNU’'s Not Unix

e Timeline

« 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

« 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source releases

« Competing commercial vendors all package and
sell their derivations of UNIX (AT&T, HP, Sun, IBM,
SGl) S———

« Also 1983: “Starting this Thanksgiving | am going
to write a complete Unix-compatible software
system called GNU (Gnu's Not Unix), and give it
away free to everyone who can use it”

Carnegie

Mellon
University

Free software as a Philosophy

* “Free asin Speech, not as in beer”

Richard Stallman’s Free Software Foundation —
free as in liberties

« Freedom O: run code as you wish, for any
purpose

* Freedom 1: study how code works, and
change it as you wish

« Freedom 2: redistributed copies (of original) so
you can help others

« Freedom 3: distribute copies of your modified
version to others

MATRL lfﬁ | LW
Mellon
University

Free software as a Philosophy

* “Free asin Speech, not as in beer”
FSF: software licensed under GNU Public License (GPL), considering questions
like:
« Required to redistribute modifications (under same license)? Yes, “copyleft”
« Can you combine it with more restrictive licenses? No, not even with BSD!

Alternative (more like BSD):
“Do whatever you want with this software, but don’t blame me if it doesn't work” freeware

Carnegie

Mellon
University

Copyleft v. permissive

« Can | combine OSS with my product, releasing my product
under a different license (perhaps not even OS)?

« Permissive licenses encourage adoption by permitting this
practice

« Copyleft “protects the commons” by having all linked code
under same license, transitively requiring more sharing

« Philosophy: do we force participation, or try to
grow/incentivize it in other ways?

Carnegie

Mellon
University

GNU/Linux (1991-Today)

Stallman set out to build an operating system in 1983, ended up
building utilities needed by an operating system (compiler, etc)

Linux is built around and with the GNU utilities, licensed under
GPL

Rise of the internet, demand for internet servers drives demand
for cheap/free OS

Companies adopted and support Linux for enterprise custom =@
IBM committed over $1B; Red Hat and others

Carnegie

Mellon
University

Netscape’s open source gambit

Netscape was dominant web browser early 90's

Business model: free for home and education
use, companies pay

Microsoft entered browser market with Internet
Explorer, bundled with Windows95, soon

overtakes Netscape in usage (free with Windows) |,

January 1998: Netscape first company to open
source code for proprietary product (Mozilla)

100°%6

80°%6

60°%o6

40%0

20°%%0

0O %o
1994 1996

=D o Q 2
NET
lome / Business / Enter

prise Software

Netscape unveils its Navigator
source code site

Netscape Communications Corp. is rallying its troops for next
month's release of the source code for the
company's Navigator Web browser.

l Written by Maria Seminerio, Contributor on Feb. 22,1998

Carnegie

Mellon
University

Netscape creates a new license and mode|

* Until Netscape, much of OSS was the FSF and its GPL

* Open Source coined in 1998 by the Open Source Initiative
to capture Netscape's aim for an open development
process

* New licenses follow, e.g. MIT, Apache, etc. just like BSD, but
without the advertising part

s &
_:'» i

* Publisher Tim O'Reilly organizes a Freeware Summit later
in 1998, soon rebranded as Open Source Summit

* Open Source is a development methodology; free software is |
a social movement } V 1A
— Richard Stallman

Carnegie

Mellon
University

Perception (from some):

Anarchy
Demagoguery
Ideology
Altruism

A REMINDER
from
YOUR FRIENDS AT MICROSOFT

Carnegie

Mellon
University

Why Go Open Source (vs. Proprietary) ?

Advantages Disadvantages
. <today’s activity; do in . <make sure to note down
groups> names of people sitting

next to you>

Carnegie

Mellon
University

Why Go Open Source (vs. Proprietary) ?

Advantages Disadvantages
Transparency, gain user trust - Reveal implementation secrets
Many eyes: crowd-source bug reports - Many eyes: users can find faults more
and fixes easily
Security: more likely for vulnerabilities - Security: more likely for others to find
to be quickly identified vulnerabilities first
Community and adoption: get others - Control: You may not be able to
to contribute features, build stuff influence the long-term direction of
around you, or fork your project your platnform

Carnegie

Mellon
University

Open-Source Ecosystems

How OSS is developed

*Tow wost bmportant book cbout techwology Saday
with daplicationn et po far beyonnd prograawing.”

The Cathedral and the Bazaar

& THE BAZAAR

MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVOLUTIONARY

ERIC S. RAYMOND

WITH A FORENORD BY 538 YOUNS, CHARMAN & CEO OF RED HAT, ISC.

Carnegie

Mellon
University

The Bazaar won

Cathedral Bazaar

. Developed centrally by a . Developed openly and
core group of members organically

. Available for all once . Wide participation (in
complete (or at releases) theory, anyone can

. Examples: GNU Emacs, contribute)

GCC (back in the 1990s) . Examples: Linux

. “Sort-of” examples today:
Chrome, Intellj]

Carnegie
Mellon

University

OSS has many stakeholders /
contributors

* Core members
* Often (but not always) includes the original creators
* Direct push access to main repository
* May be further split into admin roles and developers

* External contributors
* File bug reports and report other issues
* (Contribute code and documentationvia pull requests

* Other supporters
* Beta testers (users)
* Sponsors (financial or platform)
* Steering committees or public commenters (for standards and RFCs)

* Spin-offs

* Maintainers of forks of the original repository

Carnegie

Mellon
University

Contributing processes

« Mature OSS projects often have strict contribution
guidelines
« Look for CONTRIBUTING.md or similar

« Common requirements:
« Coding style (recall: linters) and passing static checks
 Inclusion of test cases with new code
* Minimum number of code reviews from core devs
« Standards for documentation
« Contributing licensing agreements (more on that later)

Carnegie

Mellon
University

Governence

* Some OSS projects are managed by for-profit firms

* Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow (Google),
PyTorch (Meta), Java (Oracle)

* Contributors may be a mix of employees and community volunteers

* Corporations often fund platforms (websites, test servers, deployments, repository
hosting, etc.)

* Corporations usually control long-term vision and feature roadmap

* Many OSS projects are managed by non-profit foundations or ad-hoc communities

* Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox (Mozilla), Python
(PSF), NumPy (community)

* Foundations fund project infrastructure via charitable donations
* Long-term vision often developed via a collaborative process (e.g., Apache) or by
benevolent dictators (e.g., Python, Linux)
* Corporations still heavily rely on community-owned OSS projects
* Many 0SS non-profits are funded by Big Tech (e.g., Mozilla by Google)

Carnegie

Mellon
University

xample: Apache

WHAT MAKES THE APACHE WAY SO HARD TO DEFINE?

The Apache Way is a living, breathing interpretation of one's experience with our community-led development process. Apact
unique, diverse, and focused on the activities needed at a particular stage of the project’s lifetime, including nurturing comm
building awareness. What is important is that they embrace:

e Earned Authority: all individuals are given the opportunity to participate, but their influence is based on publicly earnec
community. Merit lies with the individual, does not expire, is not influenced by employment status or employer, andis n
project cannot be applied to another). More on merit.

e Community of Peers: individuals participate at the ASF, not organizations. The ASF's flat structure dictates that roles are
equal weight, and contributions are made on a volunteer basis (even if paid to work on Apache code). The Apache comr
with respect in adherence to our Code of Conduct. Domain expertise is appreciated; Benevolent Dictators For Life are di
participation.

* Open Communications: as a virtual organization, the ASF requires all communications related to code and decision-mze
asynchronous collaboration, as necessitated by a globally-distributed community. Project mailing lists are archived, pub

o dev@ (primary project development)

o user@ (user community discussion and peer support)

o commits@ (automated source change notifications)

o occasionally supporting roles such as marketing@ (project visibility)

..as well as restricted, day-to-day operational lists for Project Management Committees. Private decisions on code, policies, or |
discourse and transactions must be brought on-list. More on communications and the use of mailing lists.

» Consensus Decision Making: Apache Projects are overseen by a self-selected team of active volunteers who are contrib
Projects are auto-governing with a heavy slant towards driving consensus to maintain momentum and productivity. Wt
establish at all times, holding a vote or other coordination may be required to help remove any blocks with binding deci
More on decision making and voting.

* Responsible Oversight: The ASF governance model is based on trust and delegated oversight. Rather than detailed rul:
governance is principles-based, with self-governing projects providing reports directly to the Board. Apache Committers
reviewed commits, employing mandatory security measures, ensuring license compliance, and protecting the Apache t
abuse. More on responsibility.

[APACHE

OUR SPONSORS

The Apache Software Foundation could not exist without the continued generous support from the community. We would like to take this
opportunity to thank cur sponsors. If you are interested in sponsoring the ASF, please read our sponscrship page.

FOUNDATION SPONSORS

Platinum Sponsors:

Facesook yahooZ

x AL

- v "
Pineapple Fund HUAWEI
dWs =' Microsoft

@ Google

Carnegie
Mellon

Unive

rsity

Corporate outlook towards open-
source has evolved over the years

= A

February 3, 1976

An Open Letter to Hobbyists

To me, the most critical thing in the hobby market right now
is the lack of good software courses, books and software itself.
Without good software and an owner who understands programming, a
hobby computer is wasted. Will guality software be written for the
hobby market?

Almost a year ago, Paul Allen and myself, expecting the hobby
market to expand, hired Monte Davidoff and developed Altair BASIC.
Though the initial work took only two months, the three of us have
spent most of the last year documenting, improving and adding fea-
tures to BASIC. Now we have 4K, 8K, EXTENDED, ROM and DISK BASIC.
The value of the computer time we have used exceeds $40,000.

The feedback we have gotten from the hundreds of people who
say they are using BASIC has all been positive. Two surprising
things are apparent, however. 1) Most of these "users" never bought
BASIC (less than 10% of all Altair cwners have bought BASIC), aud
2) The amount of royalties we have received from sales to hobbyists

of you steal your softwa

Is this fair? One thing you don't do by stealing software is
get back at MITS for some problem you may have had. MITS doesn't
make money selling software. The. royalty paid to us, the manual,
the tape and the overhead make it a break-even operation. One thing
you do do is prevent good software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
3-man years into programming, £inding all bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has
invested a lot of money in hobby software. We have written 6800
BASIC, and are writing 8080 APL and 6800 APL, but there is very lit-
tle incentive to make this software available to hobbyists. Most
directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobby software? Yes, but those who have been reported
to us may lose in the end. They are the ones who give hobbyists a
bad name, and should be kicked out of any club meeting they show up
at.

I would appreciate letters from any one who wants to pay up, or
has a suggestion or comment. Just write me at 1180 Alvarado SE, #114,
Albuquerque, New Mexico, 87108. Nothing would please me more than
being able to hire ten programmers and deluge the hobby market with

good software. BM /J’:g,;{

Bill cates
General Partner, Micro-Soft

Redmond top man Satya Nadella: 'Microsoft
LOVES Linux'

Open-source 'love' fairly runneth over at cloud event

20 Oct 2014 at 23:45, Neil McAllister

&
O
)
5]

Carnegie

Mellon
University

Risks in not open-sourcing?

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@ google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp

Carnegie
Mellon
University

Use of open source software within companies

Is the license compatible with our intended use?
* More on this later

How will we handle versioning and updates?

* Does every internal project declare its own versioned dependency or do we all agree on
using one fixed (e.g., latest) version?

* Sometimes resolved by assigning internal “owners” of a third-party dependency, who
are responsible for testing updates and declaring allowable versions.

How to handle customization of the OSS software?

* Internal forks are useful but hard to sync with upstream changes.

* One option: Assign an internal owner who keeps internal fork up-to-date with upstream.

* Another option: Contribute all customizations back to upstream to maintain clean
dependencies.

Security risks? Supply chain attacks on the rise.

Carnegie

Mellon
University

ALL MODERN DIGITAL
INFRP\&TRUC TURE QUARTZ Make business better.™ 0 @ SendusaTip! [e =

HOME LATEST BUSINESS NEWS MONEY & MARKETS TECH & INNOVATION LIFESTYLE LEADERSHIP EMAILS . PODCASTS ENESPANOL

r_ ﬂ W We may eam a commission from links on this page.

@‘ ﬁ RRRRRRR

How one programmer broke the
3 internet by deleting a tiny piece of

|) ﬁ
A PROJECT S0ME exports leftpad;
RANDOM PERSON fur leftp (str, len, ch) {
IN NEBRASKA HAS ARl '

.) BEEN THANKLESSLY 5 if (1ch l’ch) ch
MAINTAINING len = len - str.length;

(++i < len) {

SINCE. 2005 - str = ch + str;

'{ ! ;_J i 4 ey
_]
—

Carnegie

https://xkcd.com/2347/ Me!lnn' ‘
University

Software Licenses

Note: | am not a lawyer (this is not legal advice)

Carnegie

Mellon
University

Most popular open source licenses worldwide in 2021

*
Apache 2.0 34.1%
a
MIT
o
GPL 3.0
o
CPL 2.0
11
BSD 3 A
LGPL 2.1
BSD 2

Microsoft Public

0% 5% 10% 15% 20% 25 30 35% 405
Share of database
© Statista 2023 &
© Additional Information Show source @

Carnegie

Mellon
University

Which license to choose?

&« C ()} @ choosealicense.com h & S *

Choose an open source license

An open source license protects contributors and users. Businesses and savvy developers won't touch a project without this protection.

Which of the following best describes your situation?

£ 3 —

Ineed toworkina I want it simple and I care about sharing
community. permissive. improvements.

Use the license preferred by the The MIT License is short and to the point. It The GNU GPLv3 also lets people do almost
community you're contributing to or lets people do almost anything they want anything they want with your project, except

depending on. Your project will fit right in. with your project, like making and distributing closed source versions.

distributing closed source versions.
If you have a dependency that doesn't have Ansible, Bash, and GIMP use the GNU
a license, ask its maintainers to add a Babel, .NET, and Rails use the MIT License. GPLv3.
license.

What if none of these work for me?

My projectisn’t Iwant more Idon’t want to
software. choices. choose a license.
There are licanses for that. More licenses are available. Here’s what happens if you don’t.

Carnegie

Mellon
Univers

GNU General Public License: The Copyleft License

« Nobody should be restricted by the software they use. There are
four freedoms that every user should have:
e the freedom to use the software for any purpose,
e the freedom to change the software to suit your needs,
e the freedom to share the software with your friends and neighbors, and
e the freedom to share the changes you make.

Code must be made available

Any modifications must be relicensed under the same license
(copyleft)

Carnegie

Mellon
University

Risks of “copyleft” licenses

« Example: GNU GPL

« Require licensing derivative works also with same license
« This is intentional!

« Depending on a GPL project from within a proprietary or
differently-licensed codebase is disaster

 Viral effect of polluting everything else with GPL requirement

« Most companies will avoid GPL code with a ten-foot pole

« Expect vetting process before engineers are allowed to use third-party
libraries from GitHub, etc.

Carnegie

Mellon
University

Lesser GNU Public License (LGPL)

« Software must be a library

« Similar to GPL but does not consider dynamic binding as
“derivative work"

« S0, proprietary code can depend on LGPL libraries as long as
they are not being modified

« See also: GPL with classpath exception (e.g., Oracle JDK)

Carnegie

Mellon
University

MIT License

« Simple, commercial-friendly license
« Must retain copyright credit

« Software is provided as is

« Authors are not liable for software
« No other restrictions

Carnegie

Mellon
University

Apache License

« Similar to MIT license

« Not copyleft

« Not required to distribute source code

« Does not grant permission to use project’s trademark

« Does not require modifications to use the same license

Carnegie

Mellon
University

BSD License

» No liability and provided as is.

« Copyright statement must be included in source and binary

« The copyright holder does not endorse any extensions without
explicit written consent

Carnegie

Mellon
University

Creative Commons (CC)

« More common for licensing data-sets instead of code
« Examples: images, websites, documentation, slides, plots, videos

« CC-BY (attribution only; derivatives allowed)
« CC-BY-SA (attribution and share-alike for derivates)
« CC-BY-ND (attribution and no derivatives)

Carnegie

Mellon
University

MySQal.

Dual License Business Model

Released as GPL
which requires a
company using the
open source
product to open
source it's
application

Or com anies can

E% 000 ggrgaally

recelve a copy of

MySQL with @ more
busmess friendly
license

Carnegie

Mellon
University

Risk: Incompatible Licenses

« Sun open-sourced OpenOffice, but when Sun was acquired by
Oracle, Oracle temporarily stopped the project.

« Many of the community contributors banded together and
created LibreOffice

» Oracle eventually released OpenOffice to Apache

 LibreOffice changed the projectlicense so LibreOffice can copy
changes from OpenOffice but OpenOffice cannot do the same
due to license conflicts

Carnegie

Mellon
University

Copyright vs. Intellectual Property (IP)

 |P and Patents cover an idea for solving a problem

« Examples: Machine designs, pharma processes to manufacture certain
drugs, (controversially) algorithms

« Have expiry dates. IP can be licensed or sold/transferred for $$%.

« Copyrights cover particular expressions of some work
« Examples: Books, music, art, source code

« Automatic copyright assignment to all new work unless a license
authorizes alternative uses.

« Exceptions for trivial works and ideas.

Carnegie

Mellon
University

Contributor Licensing Agreements (CLA)

« Often a requirement to sign these before you can contribute to
OSS projects
« Scoped only to that project

« Assigns the maintainers specific rights over code that you
contribute

« Without this, you own the copyright and IP for even small bug fixes and
that can cause them legal headaches in the future

Carnegie

Mellon
University

Retrospectives

 Start doing?
 Stop doing?
« Keep doing?

Carnegie

Mellon
University

Early Course Feedback

« https://forms.gle/wB5kiGerKo4avnV79

	Slide 1: Open Source
	Slide 2: Administrivia
	Slide 3: Learning Goals
	Slide 4: Background: laws and open source
	Slide 5
	Slide 6: What is Open-Source Software?
	Slide 7
	Slide 8: What is Open-Source Software (OSS)?
	Slide 9: Contrast with proprietary software: a black box
	Slide 10
	Slide 11: Early open source: UNIX to BSD
	Slide 12: The BSD License is Permissive
	Slide 13: UNIX to GNU’s Not Unix
	Slide 14: Free software as a Philosophy
	Slide 15: Free software as a Philosophy
	Slide 16: Copyleft v. permissive
	Slide 17: GNU/Linux (1991-Today)
	Slide 19: Netscape’s open source gambit
	Slide 20: Netscape creates a new license and model
	Slide 21
	Slide 22: Why Go Open Source (vs. Proprietary) ?
	Slide 23: Why Go Open Source (vs. Proprietary) ?
	Slide 24: Open-Source Ecosystems
	Slide 25: The Cathedral and the Bazaar
	Slide 26: The Bazaar won
	Slide 27: OSS has many stakeholders / contributors
	Slide 28: Contributing processes
	Slide 29: Governence
	Slide 30: Example: Apache
	Slide 31: Corporate outlook towards open-source has evolved over the years
	Slide 32: Risks in not open-sourcing?
	Slide 33: Use of open source software within companies
	Slide 34
	Slide 35: Software Licenses
	Slide 36
	Slide 37: Which license to choose?
	Slide 38: GNU General Public License: The Copyleft License
	Slide 40: Risks of “copyleft” licenses
	Slide 41: Lesser GNU Public License (LGPL)
	Slide 42: MIT License
	Slide 43: Apache License
	Slide 44: BSD License
	Slide 45: Creative Commons (CC)
	Slide 46: Dual License Business Model
	Slide 47: Risk: Incompatible Licenses
	Slide 48: Copyright vs. Intellectual Property (IP)
	Slide 49: Contributor Licensing Agreements (CLA)
	Slide 50: Retrospectives
	Slide 51: Early Course Feedback

