
Open Source
17-313 Spring 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Eduardo Feo Flushing

https://cmu-313.github.io/

Administrivia

• P4 due tonight

• Midterm 2 review session in recitation 4/15

• Final Exam attendance Mandatory:
• Monday, April 29, 2024 05:30pm-08:30pm

• If you will be celebrating Passover, let us know ASAP to support
alternatives.

• Conflicts come talk to us as well

• Monday April 8th eclipse

Early Course Feedback

• Start Doing:
• more descriptive writeups x6
• JS/TS review x4
• more lectures on how to navigate code bases
• more recitation group activities
• more check-ins with TAs
• explain project in a lecture or recitation
• more diverse candy
• more TA office hours, OHQ
• make teams more fair
• show solutions to technical challenges

Early Course Feedback

• Stop Doing:
• slack

• unclear project instructions x4

• more Businessy lectures.

• in-class attendance

• JS/TS without teaching in class x2

• lecture without breaks x2

• short checkpoints

• no work on weekends

Early Course Feedback

• Keep Doing:
• candy x6

• reciations

• project based x3

• lecture topics

• interactive in-class activites x5

• laptop policy x3

• slack

Software Patents

Software Patents:
The Good, The Bad, and The Ugly

Venice, 1474

England, 1566

Today: USA

https://www.popularmechanics.com/technology/design/g20051677/patents-changed-the-world

What is a patent? New. Useful. Non-obvious.

“A patent is an exclusive right granted for an invention, which is a
product or a process that provides, in general, a new way of doing
something, or offers a new technical solution to a problem. To
get a patent, technical information about the invention must be
disclosed to the public in a patent application.”

https://www.wipo.int/patents/en

What rights do patents grant?

• Patents don’t give you the right to make, use, or sell an
invention.

• Patents do give you the right to exclude others from
making, using, and selling an invention for the term of a
patent (20 years)

● stop or sue others

● licensing and royalties

What’s the difference? Patents vs. Copyright

• Copyrights cover the details of expression of a work

• Copyrights don't cover any ideas
Patents only cover ideas and the use of ideas

• Copyrights happen automatically.
Patents are issued by a patent office in response to an
application.

Why do patents exist?

• Encourage disclosure of inventions

• Reward invention and creativity

• Protect investment of capital into R&D

• Encourage the market to “design around”

• Protect small companies from large ones

Software Patents

Patent or not?

Patent or not?

1. Running bingo on a computer

2. Using a computer to help users plan meals while achieving diet goals

3. Using a computer to order a pizza with customized toppings

4. Prompting a user before establishing a new network connection

5. Automatically notifying users when an item is picked up or delivered

6. Using a computer network to ask people to complete tasks and then
wait for them to do them

7. Using SMS to perform tasks (e.g., checking bank balance)

8. Selecting ALL images in a CAPTCHA that match a given text

The software patent system is broken!

Alice vs. CLS Bank (2014)

https://www.orrick.com/Articles/The-Effect-of-the-Alice-Decision-on-Software-and-3D-Printing-Patents

https://arstechnica.com/tech-policy/2014/06/supreme-court-smashes-do-it-on-a-computer-patents-in-9-0-opinion

Problem: Inventive step and non-obviousness

US5960411A

US5301348A

https://www.statista.com/statistics/256554/number-of-patent-application-filings-in-the-us

https://worldwide.espacenet.com/patent/search/family/023268567/publication/US5301348A?q=pn=US5301348
https://www.statista.com/statistics/256554/number-of-patent-application-filings-in-the-us

Problem: Long patent pendencies and terms

https://www.uspto.gov/sites/default/files/documents/USPTOFY21PAR.pdf

https://www.uspto.gov/sites/default/files/documents/USPTOFY21PAR.pdf

Problem: Incompatibility

• PNG was invented to avoid GIF patent issues

• Opus is a patent-free MP3 alternative

• AV1 vs H265

Problem: Independent discovery doesn’t matter!

“The idea that I can be presented with a
problem, set out to logically solve it with the
tools at hand, and wind up with a program
that could not be legally used because
someone else followed the same logical steps
some years ago and filed for a patent on it is

horrifying.”

John Carmack

Problem: Only large organizations benefit

• The patent system relies on people to challenge bad
patents

● requires considerable time, money, and legal expertise

● the US legal system requires both parties to pay legal fees (c.f.,
losers pay costs in Europe) *

• US software patents cost between $15,000 to $45,000!
● that’s before you even apply for international patents!

https://www.patenttrademarkblog.com/how-much-patent-costs

https://www.eff.org/issues/patent-busting-project

Problem: Non-Practicing Entities (Patent Trolls)

Problem: Innovation is Stifled

“As a developer for a small startup, absurd software
patents are a constant worry. Stories abound of people
like us getting pressured out of existence over the use of
incredibly vague, basic interface elements and system
components.”

“Software patents are generally written in vague and
nontechnical legal language, which obfuscates the patent
in question . . . and also makes it easy to dramatically
extend the patent to elements not considered at all when
the patent was originally filed.”

https://www.eff.org/document/defend-innovation-how-fix-our-broken-patent-system

This American Life: When Patents Attack!

• Innovatio sued libraries and coffee shops
for providing WiFi in a public space

• Boadin has sued various media outlets,
claiming that its patents are infringed
whenever a word or phrase on your
computer autocompletes

• NPHJ claims they hold a patent on
“scanning and emailing documents”. They
tried to sued non-profits for $1000 per
employee in damages.

https://www.thisamericanlife.org/496/when-patents-attack-part-two

https://www.thisamericanlife.org/496/when-patents-attack-part-two

https://www.eff.org/deeplinks/2022/05/patent-troll-uses-ridiculous-people-finder-patent-sue-small-dating-companies

• Zoosk has a website that mobile devices can connect to
• Zoosk’s server collects information from the mobile devices, including location and unique device identifiers
• Zoosk users can send and accept invitations to connect with and send messages to each other.
• Zoosk shares profile information of connected users, who are “members of a same social network” (i.e., they’re on Zoosk)
• Zoosk can connect users who are in the immediate vicinity of each other, or a particular distance away

https://www.eff.org/
https://patents.google.com/patent/US9264875/en

Problem: Open Source is under attack, too!

https://www.zdnet.com/article/patent-troll-attacks-against-open-source-projects-are-up-100-since-last-year-heres-why/
https://www.linuxfoundation.org/blog/blog/ensuring-patents-foster-innovation-in-open-source

What next?

• Alternative licensing models
● The Defensive Patent License (DPL)

● The Open Invention Network (OIN)

● License on Transfer (LOT)

• Bogus patent bounties

• Unified Patents

• Commonsense reform

• Abolish software patents?

https://www.unifiedpatents.com/
https://blog.cloudflare.com/project-jengo-redux-cloudflares-prior-art-search-bounty-returns

Dependency Management

Left-pad (March 22, 2016)

Left-pad (March 22, 2016)

Left-pad (Docs)

Left-pad (Source Code)

See also: isArray

Dependency Management

• It’s hard

• It’s mostly a mess (everywhere)

• But it’s critical to modern software
development

What is a Dependency?

• Core of what most build systems do
• “Compile” and “Run Tests” is just a fraction of their job

• Examples: Maven, Gradle, NPM, Bazel, …

• Foo->Bar: To build Foo, you may need to have
a built version of Bar

• Dependency Scopes:
• Compile: Foo uses classes, functions, etc. defined by Bar

• Runtime: Foo uses an abstract API whose implementation is provided by Bar (e.g.
logging, database, network or other I/O)

• Test: Foo needs Bar only for tests (e.g. JUnit, mocks)

• Internal vs. External Dependencies
• Is Bar also built/maintained by your org or is it pulled from elsewhere using a package

manager?

Dependencies: Example

Where are the dependencies
hosted?
• Typically downloaded from dependency servers:

• Maven Central (https://repo.maven.apache.org/maven2/)

• Ubuntu Packages for Apt (https://packages.ubuntu.com/)

• Python Package Index (https://pypi.org/)]

• NPM Public Registry (https://registry.npmjs.org/)

• Packages need a unique identifier
• Typically a package name (sometimes owner name) and version

• Custom repositories allowed by most package
managers
• Often used for company-internal packages or cache mirroring

• Note problems with duplicates (same package name in different repositories; some priority order is
needed)

• Somebody needs to manage repositories
• Availability: Repository needs to be running

• Access Control: Packages should only be published by owners

• Integrity: Packages should be signed or otherwise verifiable

• Uniqueness and archival: Only one artifact per version

• Traceability: Packages can have metadata pointing to source or tests

• Security: ???

https://repo.maven.apache.org/maven2/
https://packages.ubuntu.com/
https://pypi.org/
https://registry.npmjs.org/

Transitive Dependencies

Packages can depend on other packages

Git SSH-client

libSSL

zLib

Q: Should Git be able to use exports of libSSL (e.g. certificate
management) or zLib (e.g. gzip compression)?

Diamond Dependencies

What are some problems when multiple
intermediate dependencies have the same
transitive dependency?

Git

SSH-Client

libSSL

libHTTP

Generally, can also be across levels

Git

SSH-

Client

zLib

libSSSL

libHTTP

Diamond Dependencies

What are some problems when multiple
intermediate dependencies have the same
transitive dependency?

Git 2.17.1

SSH-Client 1.7.6
libSSL 1.0.2

libHTTP 2.14 libSSL 1.1

Resolutions to the Diamond
Problem
1. Duplicate it!

• Doesn’t work with static linking (e.g. C/C++), but may be doable with Java (e.g.
using ClassLoader hacking or package renaming)

• Values of types defined by duplicated libraries cannot be exchanged across

2. Ban transitive dependencies; just use a global list with one version for each

• Challenge: Keeping things in sync with latest

• Challenge: Deciding which version of transitive deps to keep

3. Newest version (keep everything at latest)

• Requires ordering semantics

• Intermediate dependency may break with update to transitive

4. Oldest version (lowest denominator)

• Also requires ordering semantics

• Sacrifices new functionality

5. Oldest non-breaking version / Newest non-breaking version

• Requires faith in tests or semantic versioning contract

Semantic Versioning

• Widely used convention for versioning releases
• E.g. 1.2.1, 3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rc1

• Format: {MAJOR} . {MINOR} . {PATCH}

• Each component is ordered (numerically, then lexicographically; release-
aware)
• 1.2.1 < 1.10.1
• 3.1.0-alpha-1 < 3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0

• Contracts:
• MAJOR updated to indicate breaking changes

• Same MAJOR version => backward compatibility
• MINOR updated for additive changes

• Same MINOR version => API compatibility (important for linking)
• PATCH updates functionality without new API

• Ninja edit; usually for bug fixes

https://semver.org/

People rely on SemVer contracts

Dependency Constraints

• E.g. Declare dependency on ”Bar > 2.1”
• Bar 2.1.0, 2.1.1, 2.2.0, 2.9.0, etc. all match

• 2.0.x does NOT match

• 3.0.x does NOT match

• Diamond dependency problem can be
resolved using SAT solvers
• E.g. Foo 1.0.0 depends on “Bar >= 2.1” and “Baz 1.8.x”

• Bar 2.1.0 depends on “Qux [1.6, 1.7]”

• Bar 2.1.1 depends on “Qux 1.7.0”

• Baz 1.8.0 depends on “Qux 1.5.x”

• Baz 1.8.1 depends on “Qux 1.6.x”

• Find an assignment such that all dependencies are satisfied

• Solution: Use Bar 2.1.0, Baz 1.8.1, and Qux 1.6.{latest}

Semantic Versioning Contracts

• Largely trusting developers to maintain them

• Constrained/range dependencies can cause
unexpected build failures

• Automatic validation of SemVer is hard

Cyclic Dependencies

• A very bad thing

• Avoid at all costs

• Sometimes unavoidable or intentional
• E.g. GCC is written in C (needs a C compiler)

• E.g. Apache Maven uses the Maven build system

• E.g. JDK tested using JUnit, which requires the JDK to compile

A B

Cyclic Dependencies

• Bootstrapping: Break cycles over time

• Assume older version exists in binary (pre-built form)

• Step 1: Build A using an older version of B

• Step 2: Build B using new (just built) version of A

• Step 3: Rebuild A using new (just built) version of B

• Now, both A and B have been built with new versions of their
dependencies

• Doesn’t work if both A and B need new features of each other at the same
time (otherwise Step 1 won’t work)
• Assumes incremental dependence on new features

• How was the old version built in the first place? (it’s turtles all the way
down)
• Assumption: cycles did not exist in the past
• Successfully applied in compilers (e.g. GCC is written in C)

Dependency Security

• Will you let strangers execute arbitrary code on your laptop?

• Think about this every time you do “pip install” or “npm install” or “apt-get
updgrade” or “brew updgrade” or whatever (esp. with sudo)

• Scary, right? Who are you trusting? Why?

• Typo squatting (“pip install numpi”)

• Outright malice (remember the event-stream incident?)

• Genuine security vulnerabilities due to software bugs

Takeaways

• Dependency management is hard.

	Slide 1: Open Source
	Slide 2: Administrivia
	Slide 3: Early Course Feedback
	Slide 4: Early Course Feedback
	Slide 5: Early Course Feedback
	Slide 6: Software Patents
	Slide 7: Software Patents: The Good, The Bad, and The Ugly
	Slide 8: Venice, 1474
	Slide 9: England, 1566
	Slide 10: Today: USA
	Slide 11: What is a patent? New. Useful. Non-obvious.
	Slide 12: What rights do patents grant?
	Slide 13: What’s the difference? Patents vs. Copyright
	Slide 14: Why do patents exist?
	Slide 15: Software Patents
	Slide 16: Patent or not?
	Slide 17: Patent or not?
	Slide 18: The software patent system is broken!
	Slide 19: Alice vs. CLS Bank (2014)
	Slide 20: Problem: Inventive step and non-obviousness
	Slide 21: Problem: Long patent pendencies and terms
	Slide 22: Problem: Incompatibility
	Slide 23: Problem: Independent discovery doesn’t matter!
	Slide 24: Problem: Only large organizations benefit
	Slide 25: Problem: Non-Practicing Entities (Patent Trolls)
	Slide 26: Problem: Innovation is Stifled
	Slide 27: This American Life: When Patents Attack!
	Slide 28
	Slide 29: Problem: Open Source is under attack, too!
	Slide 30: What next?
	Slide 31: Dependency Management
	Slide 32: Left-pad (March 22, 2016)
	Slide 33: Left-pad (March 22, 2016)
	Slide 34: Left-pad (Docs)
	Slide 35: Left-pad (Source Code)
	Slide 36: See also: isArray
	Slide 37
	Slide 38: Dependency Management
	Slide 39: What is a Dependency?
	Slide 40: Dependencies: Example
	Slide 41: Where are the dependencies hosted?
	Slide 42: Transitive Dependencies
	Slide 43: Diamond Dependencies
	Slide 44: Diamond Dependencies
	Slide 45: Resolutions to the Diamond Problem
	Slide 46: Semantic Versioning
	Slide 47: https://semver.org/
	Slide 48: People rely on SemVer contracts
	Slide 49: Dependency Constraints
	Slide 50: Semantic Versioning Contracts
	Slide 51: Cyclic Dependencies
	Slide 52: Cyclic Dependencies
	Slide 53: Dependency Security
	Slide 54: Takeaways

